Basic Numerical Methods

by Al Bernstein

http://www.metricmath.com al@metricmath.com

Numerical Differentiation

A numerical derivative can be derived using the following approach:

The Taylor Series for f(x) about the point x = a is given by equation (1)

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \dots + \frac{(x - a)^n}{(n - 1)!}f^{(n)}(0) + R_n$$
 (1)

If we quantize f(x) by setting $x_n = nh$ for $n \equiv$ an integer and $h \equiv \Delta x$

then
$$f_n = f(x_n)$$
 (2)

We set a = 0 then

$$f_1 = f(h) = f(0) + f'(0)h + f''(0)\frac{h^2}{2!} + f'''(0)\frac{h^3}{3} + O(h^4)$$
(3)

$$f_{-1} = f(-h) = f(0) - f'(0)h + f''(0)\frac{h^2}{2!} - f'''(0)\frac{h^3}{3!} + O(h^4)$$
(4)

Subtracting equation (4) from equation (3) gives

$$f_1 - f_{-1} = 2 \left(f'(0)h + f'''(0) \frac{h^3}{3!} + O(h^4) \right)$$
 (5)

Equation (5) can be rewritten as

$$f'(0) = \frac{f_1 - f_{-1}}{2h} - f'''(0)\frac{h^2}{6} + O(h^4)$$
(6)

For a general quantized point x_n , equation (6) gives

$$f'(x_n) = \frac{f_{n+1} - f_{n-1}}{2h} - f'''(x_n) \frac{h^2}{6} + O(h^4)$$
 or

$$f'(x_n) \cong \frac{f_{n+1} - f_{n-1}}{2h} \tag{7}$$

Equation (7) will work when $f'''(x_n) \cong 0$. If $f'''(x_n) = 0$, then f(x) is implicitly modeled by a second order polynomial. Higher order derivatives can be derived in the same way.

Numerical Integration

We start with the Taylor series using equation (1) with a = 0, use equation (7) for $f'(x_n)$ and use equation (8) for $f''(x_n)$.

$$f''(x_n) \approx \frac{f_{n+1} - 2f_n + f_{n-1}}{h^2} \tag{8}$$

Then
$$f(x_n) \approx f_n + \frac{f_{n+1} - f_{n-1}}{2h} x_n + \frac{f_{n+1} - 2f_n + f_{n-1}}{h^2} \frac{x_n^2}{2!}$$
 (9)

$$\int_{-h}^{+h} f(x_n) dx = \left[f_n x + \frac{f_{n+1} - f_{n-1}}{2h} \frac{x_n^2}{2} + \frac{f_{n+1} - 2f_n + f_{n-1}}{h^2} \frac{x_n^3}{6} \right]_{-h}^{h} =$$

$$2f_n + \frac{h}{3} \left[f_{n+1} - 2f_n + f_{n-1} \right] = \frac{h}{3} \left[f_{n+1} + 6f_n - 2f_n + f_{-1} \right] =$$

$$\frac{h}{3} \left[f_{n+1} + 4f_n + f_{n-1} \right] \tag{10}$$

which is Simpson's Rule. Higher order integration methods can be derived in a similar way. For a general discussion on this approach for deriving numerical methods see ¹

Electronic Implementation

This section shows how to implement a numerical algorithm in a circuit design. For example if we start with Simpson's Rule equation (10), we can first modify it to be causal. This means that we can deal with indices n,n-1 etc so that at time 0 we use the index n (i.e. the system is not operating before time t=0). We do this by changing the indexing in equation (delaying by 1 sample) (10).

$$\int_{-h}^{+n} f(x_{n-1}) dx = \frac{h}{3} [f_n + 4f_{n-1} + f_{n-2}]$$
(11)

¹ Steve E. Koonin, Computational Physics, Addison-Wesley, pp 2-6 (1986)

The block diagram is shown below in Figure 1

Block Diagram

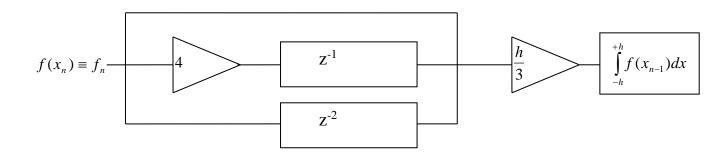


Figure 1

This is shown as a system that can be implemented in the digital domain. The z^{-1} and z^{-2} represent delays of 1 and 2 samples respectively. They could be implemented with digital electronics, analog electronics or theoretically other mechanical or electrical systems which provide a delay equivalent to one sample in time and gain elements.