
1 

Basic Numerical Methods 

by 

Al Bernstein 
http://www.metricmath.com 

al@metricmath.com 

 

 

Numerical Differentiation 

 

A numerical derivative can be derived using the following approach: 

 

The Taylor Series for )(xf  about the point ax =  is given by equation (1) 
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If we quantize )(xf  by setting nhxn =  for n ≡ an integer and h ≡ x  

then )( nn xff =          (2) 

 

We set 0=a  then 
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Subtracting equation (4) from equation (3) gives 

 









++=− − )(

!3
)0()0(2 4

3

11 hO
h

fhfff      (5) 

 

Equation (5) can be rewritten as  
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      For a general quantized point nx , equation (6) gives  
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Equation (7) will work when 0)( 
nxf . If 0)( =

nxf , then )(xf  is implicitly 

modeled by a second order polynomial. Higher order derivatives can be derived in the 

same way. 

 

Numerical Integration 

 

We start with the Taylor series using equation (1) with 0=a , use equation (7) for 

)( nxf   and use equation (8) for )( nxf  . 
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which is Simpson’s Rule. Higher order integration methods can be derived in a similar 

way. For a general discussion on this approach for deriving numerical methods see1 

 

Electronic Implementation 

 

This section shows how to implement a numerical algorithm in a circuit design. For 

example if we start with Simpson’s Rule equation (10), we can first modify it to be 

causal. This means that we can deal with indices n,n-1 etc so that at time 0 we use the 

index n (i.e. the system is not operating before time t=0). We do this by changing the 

indexing in equation (delaying by 1 sample) (10). 
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1 Steve E. Koonin, Computational Physics, Addison-Wesley, pp 2-6 (1986) 
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The block diagram is shown below in Figure 1 

 

Block Diagram 

 
 

 

     Figure 1 

 

This is shown as a system that can be implemented in the digital domain. The z-1 and z-2 

represent delays of 1 and 2 samples respectively. They could be implemented with digital 

electronics, analog electronics or theoretically other mechanical or electrical systems 

which provide a delay equivalent to one sample in time and gain elements. 
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