
1

Math Database

By

Al Bernstein
11/9/2023

http://www.metricmath.com

al@metricmath.com

Introduction

The approach for this writeup is to shift from performing the computations numerically or

symbolically by hand, to automating the computations symbolically using Python and the sympy

library. The idea is to automate and speed up the process of performing the computations while

retaining their generality. The math database will be able to store results from calculations, so

they don’t need to be repeated and can be reused in more complex calculations. The code

associated with this writeup is located at MathDatabase.

Format

In general, coordinates such as polar don’t depend on any other coordinates. For example, you

could create a grid in polar coordinates and plot polar point tuples (𝑟 𝜃) without referencing

cartesian coordinates at all. However, in that case you can’t add vectors by adding their

components algebraically as will be shown. When defining curvilinear coordinates, as we have

in the past, there are a set of ‘new’ coordinates written as linear combinations of a set of ‘old’

coordinates. But to create new vectors by writing them as linear combinations of a set of ‘old’

coordinates, means that the ‘old’ basis vector components need to be able to be added

algebraically and implies that all curvilinear coordinate systems were derived from cartesian

components and that the basis vectors of these coordinate systems are written as cartesian

representations. For example, polar coordinates will be derived from cartesian coordinates, so the

polar basis vectors are written in terms of cartesian components. A new coordinate system

derived from a linear combination of the polar basis vectors, will therefore also be written in

terms of cartesian components.

As we have seen in previous writeups, the relationships between the old and new coordinates is

given by equation (1).

𝑞𝑖(𝑞 𝑗̅) ⇒ 𝒒(𝒒̅) ≡ coordinate relation

(1)

Note: that the primed coordinates are notated by putting a bar above the index. This notation

allows the transformation matrices to be notated in a functional form as functions of the indices.

The transformation of basis vectors from ‘old’ to ‘new coordinates, 𝐸 to 𝐸̅ is given by equation

(2).

http://www.metricmath.com/
mailto:al@metricmath.com
https://github.com/almetricmath/General-Relativity/tree/main/MathDatabase

2

𝜕

𝜕𝑞1̅
=

𝜕𝑞1

𝜕𝑞1̅

𝜕

𝜕𝑞1
+ ⋯+

𝜕

𝜕

𝑞𝑛

𝑞1̅

𝜕

𝜕𝑞𝑛

 ⋮

𝜕

𝜕𝑞𝑛̅
=

𝜕𝑞1

𝜕𝑞𝑛̅

𝜕

𝜕𝑞1
+ ⋯+

𝜕𝑞𝑛

𝜕𝑞𝑛̅

𝜕

𝜕𝑞𝑛

(2)

The 𝐴 matrix is given by equation (3).

𝐴 =
𝜕𝑞𝑗

𝜕𝑞𝑖̅
=

[

𝜕𝑞1

𝜕𝑞1̅
⋯

𝜕𝑞𝑛

𝜕𝑞1̅

⋮ ⋱ ⋮
𝜕𝑞1

𝜕𝑞𝑛̅
⋯

𝜕𝑞1

𝜕𝑞𝑛̅]

= 𝐴𝑖̅𝑗 = 𝐴(𝑖̅ 𝑗) = 𝐴(𝑛𝑒𝑤 𝑜𝑙𝑑)

(3)

In equation (3), the unprimed indices index the rows and the primed indices index the columns of

the 𝐴 matrix.

Equation (2) in matrix form is given by equation (4)

𝐸̅ = 𝐴𝐸

(4)

where

𝒆𝒊 = 𝐸 =
𝜕

𝜕𝑞𝑖
≡ 𝑏𝑎𝑠𝑖𝑠 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑛 𝑞𝑖 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ≡ 𝑜𝑙𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

𝒆𝒊̅ = 𝐸̅ =
𝜕

𝜕𝑞𝑖̅
≡ 𝑏𝑎𝑠𝑖𝑠 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑖𝑛 𝑞𝑖̅ 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ≡ 𝑛𝑒𝑤 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

Notice that equation (4) shows that the 𝐸̅ matrix gives the new coordinate bases in terms of the

old bases.

Now we show how to do multiple transformations. First, subscript the matrices in equation (4).

𝐸2 = 𝐴1𝐸1

(5)

Now perform another transformation using 𝐴2 ⇒

𝐸3 = 𝐴2𝐸2 = 𝐴2𝐴1𝐸1

(6)

In general,

row
column

3

𝐸𝑁 = 𝐴𝑁−1𝐸𝑁−1 = 𝐴𝑁−1𝐴𝑁−2 ⋯𝐴1𝐸1

(7)

Equation (8) is the inverse coordinate relation.

𝑞𝑖̅(𝑞𝑗) ⇒ 𝒒̅(𝒒) ≡ inverse coordinate relation

(8)

The following are the transformation equations for the one form bases:

𝑑𝑞1̅ =
𝜕𝑞1̅

𝜕𝑞1
𝑑𝑞1 + ⋯+

𝜕𝑞1̅

𝜕𝑞𝑛
𝑑𝑞𝑛

 ⋮

𝑑𝑞𝑛̅ =
𝜕𝑞𝑛̅

𝜕𝑞1
𝑑𝑞1 + ⋯+

𝜕𝑞𝑛̅

𝜕𝑞𝑛
𝑑𝑞𝑛

(9)

Let

𝐵 =
𝜕𝑞 𝑗̅

𝜕𝑞𝑖
=

𝜕𝒒̅

𝜕𝒒
=

[

 𝜕𝑞1̅

𝜕𝑞1
⋯

𝜕𝑞𝑛̅

𝜕𝑞1

⋮ ⋱ ⋮
𝜕𝑞1̅

𝜕𝑞𝑛
⋯

𝜕𝑞1̅

𝜕𝑞𝑛]

= 𝐵(𝑖 𝑗)̅ = 𝐵(𝑜𝑙𝑑 𝑛𝑒𝑤)

(10)

The transformation of basis one forms from ‘old’ to ‘new coordinates, 𝑊 to 𝑊̅ is given by

equation (11).

𝑊̅ = 𝐵𝑇𝑊 ⇒

(11)

Now we show how to do multiple transformations of the one form bases. Using the same process

as we did with basis vectors, subscript the matrices in equation (11).

𝑊2 = [𝐵1]
𝑇𝐸1

(12)

Now do another transformation using 𝐵2 ⇒

𝑊3 = [𝐵2]
𝑇𝐸2 = [𝐵2]

𝑇[𝐵1]
𝑇𝑊1

(13)

column row

4

In general,

𝑊𝑁 = [𝐵𝑁−1]
𝑇𝑊𝑁−1 = [𝐵𝑁−1]

𝑇[𝐵𝑁−2]
𝑇 ⋯[𝐵1]

𝑇𝑊1

(14)

Equations (4) and (11) show that both the vector and one form bases transformations are given in

terms of old and new coordinates, so we can store the matrices in a record as functions of the

tuple (𝑛𝑒𝑤 𝑜𝑙𝑑). Remember, the bases are row vectors.

Table 1 shows that the transform matrices can be stored in the database using the following

format:

Variable Name Variable Functional Form

𝐴 𝐴(𝑛𝑒𝑤 𝑜𝑙𝑑)

𝐵 𝐵(𝑜𝑙𝑑 𝑛𝑒𝑤)

 Table 1

Both matrices will be stored in a record that will be accessed by the tuple (𝑛𝑒𝑤 𝑜𝑙𝑑). As stated

before, all the coordinate systems will be derived from cartesian coordinates, so ‘old’ will always

be written in a cartesian representation.

Vector Addition of Polar Basis Vectors using both Cartesian and Polar

Parameters.

To better understand the cartesian representation of basis vectors, we will go through an example

using polar basis vectors. Equation (15) shows the relationships to convert from cartesian to

polar coordinates.

𝑥 = 𝑟 𝑐𝑜𝑠(𝜃)

𝑦 = 𝑟 𝑠𝑖𝑛(𝜃)

(15)

Now compute the polar basis vectors. Equation (2) ⇒

𝑒𝑟 =
𝜕

𝜕𝑟
=

𝜕𝑥

𝜕𝑟

𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝑟

𝜕

𝜕𝑦
= 𝑐𝑜𝑠(𝜃)

𝜕

𝜕𝑥
+ 𝑠𝑖𝑛(𝜃)

𝜕

𝜕𝑦
= 𝑐𝑜𝑠(𝜃)𝑒𝑥 + 𝑠𝑖𝑛(𝜃)𝑒𝑦

𝑒𝜃 =
𝜕

𝜕𝜃
=

𝜕𝑥

𝜕𝜃

𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝜃

𝜕

𝜕𝑦
= −𝑟𝑠𝑖𝑛(𝜃)

𝜕

𝜕𝑥
+ 𝑟𝑐𝑜𝑠(𝜃)

𝜕

𝜕𝑦
= −𝑟𝑠𝑖𝑛(𝜃)𝑒𝑥 + 𝑟𝑐𝑜𝑠(𝜃)𝑒𝑦

(16)

It’s clear that 𝑒𝑟 and 𝑒𝜃 are in cartesian coordinates.

5

Now represent the basis vectors in terms of polar parameters.

Let

𝑟 = 2

𝜃 =
𝜋

3

𝑒𝑟(𝑥, 𝑦) = [𝑐𝑜𝑠 (
𝜋

3
) 𝑠𝑖𝑛 (

𝜋

3
)] = [

1

2

√3

2
]

𝑒𝜃(𝑥, 𝑦) = [−2𝑠𝑖𝑛 (
𝜋

3
) 2𝑐𝑜𝑠 (

𝜋

3
)] = [−√3 1]

(17)

Now convert the basis vectors to use the parameters to (𝑟 𝜃) using the inverse coordinate

relationship.

𝑟 = √𝑥2 + 𝑦2

𝜃 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
)

(18)

For 𝑒𝑟(𝑥, 𝑦) ⇒

𝑟 = √(
1

2
)

2

+ (
√3

2
)

2

= 1

𝜃 = 𝑎𝑡𝑎𝑛2 (√
3

2

1

2
) =

𝜋

3
 ⇒

𝑒𝑟(𝑟, 𝜃) = [1
𝜋

3
]

(19)

𝑒𝜃(𝑥, 𝑦) ⇒

𝑟 = √(−√3)
2
+ (1)2 = 2

𝜃 = 𝑎𝑡𝑎𝑛2(1 −√3) =
5𝜋

6
 ⇒

(20)

6

𝑒𝜃(𝑟, 𝜃) = [2
5𝜋

6
]

(21)

Now create a new basis vector that is a linear combination of 𝑒𝑟(𝑥, 𝑦) and 𝑒𝜃(𝑥, 𝑦) ⇒

𝑒𝑟̅(𝑥, 𝑦) = 𝑒𝑟(𝑥, 𝑦) + 𝑒𝜃(𝑥, 𝑦) = [
1

2

√3

2
] + [−√3 1] = [

1

2
− √3

√3

2
+ 1]

= [
1 − 2√3

2

√3 + 2

2
]

(22)

𝑒𝑟̅(𝑥, 𝑦) ⇒

𝑟 = √(
1

2
− √3)

2

+ (
√3

2
+ 1)

2

= √(
1 − 2√3

2
)

2

+ (
√3 + 2

2
)

2

Simplifying each component separately ⇒

(
1 − 2√3

2
)

2

=
(1 − 2√3)(1 − 2√3)

4
=

1 − 4√3 + 12

4
=

13 − 4√3

4

(
√3 + 2

2
)

2

=
(√3 + 2)(√3 + 2)

4
=

3 + 4√3 + 4

4
=

7 + 4√3

4
 ⇒

(
1 − 2√3

2
)

2

+ (
√3 + 2

2
)

2

=
13 − 4√3

4
+

7 + 4√3

4
=

20

4
= 5 ⇒

𝑟 = √5

(23)

𝜃 = 𝑡𝑎𝑛−1 (
√3 + 2

1 − 2√3
) = 2.154346268990688

(24)

𝑒𝑟̅(𝑟 𝜃) = [√5 2.154346268990688]
(25)

7

Now add the polar basis vectors in the (𝑟 𝜃) parameter form directly without using cartesian

coordinates. Vectors in polar parameters add according to the following formulas1

For

𝑣1(𝑟 𝜃) = [𝑟1 𝜃1]

𝑣2(𝑟 𝜃) = [𝑟2 𝜃2]

𝑣1(𝑟 𝜃) + 𝑣2(𝑟 𝜃) ⇒

𝑟 = √𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2)

(26)

𝜃 = 𝜃1 + 𝑎𝑡𝑎𝑛2(𝑟2𝑠𝑖𝑛(𝜃2 − 𝜃1) 𝑟1 + 𝑟2𝑐𝑜𝑠(𝜃2 − 𝜃1))

 (27)

𝑒𝑟(𝑟, 𝜃) = [1
𝜋

3
]

𝑒𝜃(𝑟, 𝜃) = [2
5𝜋

6
]

𝑒𝑟̅(𝑟 𝜃) = 𝑒𝑟(𝑟, 𝜃) + 𝑒𝜃(𝑟, 𝜃) ⇒

𝑟 = √12 + 22 + 2(1)(2)𝑐𝑜𝑠 (
5𝜋

6
−

𝜋

3
) = √5 + 4𝑐𝑜𝑠 (

𝜋

2
) = √5

(28)

𝜃 = 𝜃1 + 𝑎𝑡𝑎𝑛2(𝑟2𝑠𝑖𝑛(𝜃2 − 𝜃1) 𝑟1 + 𝑟2𝑐𝑜𝑠(𝜃2 − 𝜃1))

𝜃2 − 𝜃1 =
𝜋

2
 ⇒

𝑠𝑖𝑛 (
𝜋

2
) = 1

𝑐𝑜𝑠 (
𝜋

2
) = 0 ⇒

𝑟2𝑠𝑖𝑛(𝜃2 − 𝜃1) = 𝑟2 = 2

𝑟1 + 𝑟2𝑐𝑜𝑠(𝜃2 − 𝜃1) = 𝑟1 = 1

1 Adding two Polar Vectors

https://math.stackexchange.com/questions/1365622/adding-two-polar-vectors

8

𝜃 = 𝜃1 + 𝑎𝑡𝑎𝑛2(2 1) =
𝜋

3
+ 𝑎𝑡𝑎𝑛2(2 1) = 2.154346268990688

(29)

Using equations (28) and (29) ⇒

𝑒𝑟̅(𝑟 𝜃) = [√5 2.154346268990688]
(30)

Equation (30) is the same as equation (25). This discussion shows that curvilinear transformation

equations for basis vectors – equation (2) – implicitly assume the polar basis vectors are in

cartesian coordinates because the vector components are algebraically added. The polar basis

vectors add algebraically in cartesian coordinates but add using more complicated expressions in

polar coordinates. Curvilinear coordinates assume that vector components add algebraically, so

they represent coordinate bases of a general coordinate system in cartesian coordinates. For this

reason, the ‘old’ coordinates will always be derived from cartesian coordinates. For example, if

′𝑜𝑙𝑑′ = ′𝑝𝑜𝑙𝑎𝑟′, then it is assumed that ′𝑝𝑜𝑙𝑎𝑟′ was derived from cartesian coordinates ⇒ the

polar basis vectors are in cartesian coordinates and will be shown in later examples.

Database System Outline

The data in the system is processed using the following classes. The classes are written in python

and the sympy library is used for computations.

1.) mathDB class

2.) Various coordinate transformation classes

3.) computeMatrices class

4.) transformRecord class

5.) coordinateRecord class

1.) mathDB

The mathDB class contains the _dictionary attribute which is the main attribute that holds the

various tables. Currently, there are two tables whose attributes are _transformTable and

_coordinateTable. Both of these tables are python dictionaries. The following code, in Figure

1, gets the _transformTable and _coordinateTable from the _dictionary.

Figure 1

9

Records are retrieved from the transform table and coordinate table using the tuple key
(𝑛𝑒𝑤 𝑜𝑙𝑑).

where

 𝑜𝑙𝑑 ≡ old coordinates string ≡ always derived from cartesian coordinates

 𝑛𝑒𝑤 ≡ new coordinates string

The user can specify a string representing the coordinate system. For example, Cartesian to polar

tuple could be (′𝑝𝑜𝑙𝑎𝑟′ ′𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛′)

More tables can be added to the dictionary as desired.

An example of how the tables are accessed is given in Figure 2 below.

Figure 2

The _dictionary is saved to a file and loaded from a file using pickle. This file is specified in the

call to the class in the __init__ method and the file is read using the pickle.load command. There

is a close method in the class that writes the _dictionary to the file using the pickle.dump

command.

2.) Various Coordinate Transform Classes

Coordinate classes define the coordinate transformations from an unprimed to a primed

coordinate system in vector form. For example, the coordinate relationship of cartesian in terms

of polar coordinates is shown in equation (15).

𝑥 = 𝑟 𝑐𝑜𝑠(𝜃)

𝑦 = 𝑟 𝑠𝑖𝑛(𝜃)

(15)

where

 𝑟 > 0

 0 ≤ 𝜃 ≤ 2𝜋

Equation (15) can be represented in the abstract form of equation (1) as shown in equation (31).

𝑞𝑖(𝑞 𝑗̅) ⇒ 𝒒(𝒒̅) = [𝑥(𝑟, 𝜃) 𝑦(𝑟, 𝜃)] = [𝑟 𝑐𝑜𝑠(𝜃) 𝑟 𝑐𝑜𝑠(𝜃)]
(31)

There are two variable arrays in equation (31) that are shown in equation (32).

[𝑟 𝜃]

[𝑟 𝑐𝑜𝑠(𝜃) 𝑟 𝑠𝑖𝑛(𝜃)]

10

(32)

Each coordinate transformation is a class and has two attributes - _params and _vec to represent

equation (1) and to calculate the 𝐴 matrix.

In terms of equation (31) ⇒

_𝑝𝑎𝑟𝑎𝑚𝑠 = 𝒒̅

_𝑣𝑒𝑐 = 𝒒(𝒒̅)

The _params attribute for equation (31) is [𝑟 𝜃]

The _vec attribute for equation (32) is [𝑟 𝑐𝑜𝑠(𝜃) 𝑟 𝑠𝑖𝑛(𝜃)] ⇒

To compute the 𝐵 matrix, use the inverse coordinate relation defined in equation (6).

𝑞𝑖̅(𝑞𝑗) ⇒ 𝒒̅(𝒒) ≡ inverse coordinate relation

(6)

The inverse relationship of transforming cartesian to polar coordinates is shown in equation (33).

[𝑟(𝑥, 𝑦) 𝜃(𝑥, 𝑦)] = [√𝑥2 + 𝑦2 𝑡𝑎𝑛−1 (
𝑦

𝑥
)]

(33)

We add two attributes to the coordinate classes - _inv_params and _inv_vec ⇒

_𝑖𝑛𝑣_𝑝𝑎𝑟𝑎𝑚𝑠 = 𝒒 = [𝑥 𝑦]

_𝑖𝑛𝑣_𝑣𝑒𝑐 = 𝒒̅(𝒒) = [𝑟(𝑥, 𝑦) 𝜃(𝑥, 𝑦)] = [√𝑥2 + 𝑦2 𝑡𝑎𝑛−1 (
𝑦

𝑥
)]

Figure 3 shows the class to transform from Cartesian to Polar

Figure 3

11

3.) computeMatrices

The computeMatrices class computes the transform matrices – 𝐴 and 𝐵. The 𝐴 matrix is defined

by equation (34).

𝐴 =
𝜕𝑞𝑗

𝜕𝑞𝑖̅
=

𝜕𝒒

𝜕𝒒̅
= 𝐴𝑖̅𝑗 = 𝐴(𝑖̅ 𝑗) =

[

𝜕𝑞1

𝜕𝑞1̅
⋯

𝜕𝑞𝑛

𝜕𝑞1̅

⋮ ⋱ ⋮
𝜕𝑞1

𝜕𝑞𝑛̅
⋯

𝜕𝑞1

𝜕𝑞𝑛̅]

=

[

𝜕𝒒

𝜕𝑞1̅

⋮
𝜕𝒒

𝜕𝑞𝑛̅]

=

[

𝜕(_𝑣𝑒𝑐)

𝜕_𝑝𝑎𝑟𝑎𝑚1

⋮
𝜕(_𝑣𝑒𝑐)

𝜕_𝑝𝑎𝑟𝑎𝑚𝑛]

(34)

Notice in equation (34) that the 𝑛𝑡ℎ row of the 𝐴 matrix is the derivative of the _vec parameter

with respect to _𝑝𝑎𝑟𝑎𝑚𝑛 = _𝑝𝑎𝑟𝑎𝑚[𝑛].

The 𝐵 matrix is defined by equation (35).

𝐵 =
𝜕𝑞 𝑗̅

𝜕𝑞𝑖
=

𝜕𝒒̅

𝜕𝒒
=

[

 𝜕𝑞1̅

𝜕𝑞1
⋯

𝜕𝑞𝑛̅

𝜕𝑞1

⋮ ⋱ ⋮
𝜕𝑞1̅

𝜕𝑞𝑛
⋯

𝜕𝑞1̅

𝜕𝑞𝑛]

=

[

𝜕𝒒̅

𝜕𝑞1

⋮
𝜕𝒒̅

𝜕𝑞𝑛]

=

[

𝜕(_𝑖𝑛𝑣_𝑣𝑒𝑐)

𝜕_𝑖𝑛𝑣_𝑝𝑎𝑟𝑎𝑚1

⋮
𝜕(_𝑖𝑛𝑣_𝑣𝑒𝑐)

𝜕_𝑖𝑛𝑣_𝑝𝑎𝑟𝑎𝑚𝑛]

(35)

Again, notice in equation (35) that the 𝑛𝑡ℎ row of the 𝐴 matrix is the derivative of the _vec

parameter with respect to _𝑝𝑎𝑟𝑎𝑚𝑛 = _𝑝𝑎𝑟𝑎𝑚[𝑛].

Because the computing pattern is the same for both the 𝐴 and 𝐵 matrices, we use a single routine

to compute both. This routine is shown in Figure 4.

Figure 4

12

To compute the 𝐴 matrix perform the following call to computeTransform ⇒

To compute the 𝐵 matrix perform the following call to computeTransform ⇒

The computeMatrices class, computes the 𝐴 and 𝐵 matrices symbolically using sympy. When

the 𝐵 matrix is computed using equation (35), we need to make a substitution to get the same

parameters as are in the 𝐴 matrix. Having the same parameters makes it possible to get the same

result as we do by inverting the 𝐴 matrix.

As an example, consider the inverse transform - polar in terms of cartesian coordinates.

𝑟 = √𝑥2 + 𝑦2

𝜃 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
)

(18)

𝐵 =

[

𝜕𝑟

𝜕𝑥

𝜕𝜃

𝜕𝑥
𝜕𝑟

𝜕𝑦

𝜕𝜃

𝜕𝑦]

=

[

𝑥

√𝑥2 + 𝑦2
−

𝑦

𝑥2 + 𝑦2

𝑦

√𝑥2 + 𝑦2

𝑥

𝑥2 + 𝑦2
]

(36)

Equation (36) is the 𝐵 matrix in rectangular components. The next step is to use a substitution to

convert equation (36) to polar coordinates.

Substitutions in sympy can be done using a dictionary. Equation (15) is the forward transform

equation – cartesian in terms of polar.

𝑥 = 𝑟 𝑐𝑜𝑠(𝜃)

𝑦 = 𝑟 𝑠𝑖𝑛(𝜃)
(15)

Equation (15) gives the substitutions we want to use. Now set up a dictionary as follows:

𝑠𝑢𝑏𝑠𝑡𝑟 = {𝑥: 𝑟 𝑐𝑜𝑠(𝜃), 𝑦: 𝑟 𝑠𝑖𝑛(𝜃)}

Replace 𝑥 by 𝑟 𝑐𝑜𝑠(𝜃), replace 𝑦 by 𝑟 𝑠𝑖𝑛(𝜃).

The subs function in sympy performs the substitution. The code below substitutes and simplifies

the 𝐵 matrix ⇒

13

𝐵 = 𝐵. 𝑠𝑢𝑏𝑠(𝑠𝑢𝑏𝑠𝑡𝑟)

𝐵 = 𝑠𝑦𝑚𝑝𝑦. 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦(𝐵)

Equation (37) shows the 𝐵 matrix after the substitution and simplification.

𝐵(𝑝𝑜𝑙𝑎𝑟, 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) =

[

𝑟 cos(θ)

√𝑟2
−

sin(θ)

𝑟

𝑟 sin(θ)

√𝑟2

cos(θ)

𝑟]

(37)

Sympy is not simplifying √𝑟2 → 𝑟

We add the substitution for all the parameters ⇒ √𝑟2 = 𝑟 and √𝜃2 = 𝜃. The code snippet to do

this substitution is shown below in Figure 5.

Figure 5

Equation (38) shows the resulting 𝐵 matrix and is the same matrix that we get from inverting the

𝐴 matrix.

𝐵 = [
cos(θ) −

sin(θ)

𝑟

sin(θ)
cos(θ)

𝑟

]

(38)

The 𝐸̅ and 𝑊̅ matrices are computed using equations (39).

𝐸̅ = 𝐴𝐸

𝑊̅ = 𝐵𝑇𝑊

(39)

14

The matrices 𝐴, 𝐵, 𝐸̅, 𝑎𝑛𝑑 𝑊̅ give all the variables necessary to fill Table 1. Note: 𝐸̅ in the old

system becomes 𝐸 in the new coordinate system which is why the transform record uses the

names 𝐸 and 𝑊 as opposed to 𝐸̅ and𝑊̅.

4.) transformRecord

The transform record is shown in Figure 6.

Figure 6

Note: the matrices are sympy Matrix types. Also, there is a printRecord method to output the

matrices in MS Word latex compatible format that can be cut and pasted into Word’s equation

editor in latex mode. Note that in the cases of more complex equations, there can be some

significant rendering time.

15

5.) coordinateRecord

The coordinate record is shown in Figure 7 and includes a printRecord method to output the

coordinate classes various parameters. The _name parameter gives the name of the coordinate

transformation and the remaining parameters are discussed in a previous part of this writeup.

Figure 7

Running Matrices for Different Coordinate Transforms

We now run the matrices 𝐴, 𝐵, 𝐸, 𝑎𝑛𝑑 𝑊 for different coordinate transforms.

Polar From Cartesians

Equations (15) and (18) give the forward and reverse transformations from cartesian to polar.

𝑥 = 𝑟 𝑐𝑜𝑠(𝜃)

𝑦 = 𝑟 𝑠𝑖𝑛(𝜃)

(15)

where

 𝑟 > 0

 0 ≤ 𝜃 ≤ 2𝜋

16

𝑟 = √𝑥2 + 𝑦2

𝜃 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
)

(18)

The transform matrices from cartesian to polar coordinates generated by the code are given

below.

𝐴(𝑝𝑜𝑙𝑎𝑟, 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) = [
cos(θ) sin(θ)

−𝑟 sin(θ) 𝑟 cos(θ)
]

(40)

𝐵(𝑝𝑜𝑙𝑎𝑟, 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) = [
cos(θ) −

sin(θ)

𝑟

sin(θ)
cos(θ)

𝑟

]

(41)

𝐸(𝑝𝑜𝑙𝑎𝑟, 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) = [
cos(θ) sin(θ)

−𝑟 sin(θ) 𝑟 cos(θ)
]

(42)

𝑊(𝑝𝑜𝑙𝑎𝑟, 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) = [
cos(θ) sin(θ)

−
sin(θ)

𝑟

cos(θ)

𝑟

]

(43)

PolarSqrt From Polar

The transform equations from polar to polarSqrt are shown in equations (44) and (45).

𝑟 = √𝑟̅

𝜃 = √𝜃̅

(44)

where

𝑟̅ = 𝑟2

𝜃̅ = 𝜃2

(45)

where

 𝑟 > 0

 0 ≤ 𝜃 ≤ 2𝜋

17

𝑟̅ > 0

 0 ≤ 𝜃̅ ≤ 4𝜋2

The transform matrices from polar to polarSqrt coordinates are given below.

𝐴(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡, 𝑝𝑜𝑙𝑎𝑟) =

[

1

2√𝑟̅
0

0
1

2√θ̅]

(46)

𝐵(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡, 𝑝𝑜𝑙𝑎𝑟) = [
2√𝑟̅ 0

0 2√θ̅
]

(47)

As stated above, the transformation (𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡, 𝑝𝑜𝑙𝑎𝑟) assumes that the polar coordinates were

derived from cartesian coordinates and is why we are using the (𝑝𝑜𝑙𝑎𝑟, 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) basis

vectors. We will compute the basis vectors and one forms by hand and then compare to the

program output.

𝐸(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡, 𝑝𝑜𝑙𝑎𝑟) =

[

1

2√𝑟̅
0

0
1

2√θ̅]

[
cos(θ) sin(θ)

−𝑟 sin(θ) 𝑟 cos(θ)
]

=

[

cos(θ)

2√𝑟̅

sin(θ)

2√𝑟̅

−
𝑟 sin(θ)

2√θ̅

𝑟 cos(θ)

2√θ̅]

=

[

 cos (√𝜃̅)

2√𝑟̅

sin (√𝜃̅)

2√𝑟̅

−
√𝑟̅ sin (√𝜃̅)

2√𝜃̅

√𝑟̅ cos (√𝜃̅)

2√𝜃̅]

(48)

The output of the program is given by equation (49) ⇒

𝐸(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡, 𝑝𝑜𝑙𝑎𝑟) =

[

 cos (√θ̅)

2√𝑟̅

sin (√θ̅)

2√𝑟̅

−
√𝑟̅ sin (√θ̅)

2√θ̅

√𝑟̅ cos (√θ̅)

2√θ̅]

(49)

Equations (48) and (49) are the same.

18

𝑊(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡, 𝑝𝑜𝑙𝑎𝑟) = [
2√𝑟̅ 0

0 2√θ̅
] [

cos(θ) sin(θ)

−
sin(θ)

𝑟

cos(θ)

𝑟

] = [

2√𝑟̅cos(θ) 2√𝑟̅cos(θ)

−
2√θ̅sin(θ)

𝑟

2√θ̅cos(θ)

𝑟

]

[

 2√𝑟̅cos (√θ̅) 2√𝑟̅cos (√θ̅)

−
2√θ̅sin (√θ̅)

√𝑟̅

2√θ̅cos (√θ̅)

√𝑟̅]

(50)

Equation (51) is the output from the program ⇒

𝑊(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡, 𝑝𝑜𝑙𝑎𝑟) =

[

 2√𝑟̅ cos (√θ̅) 2√𝑟̅ sin (√θ̅)

−
2√θ̅ sin (√θ̅)

√𝑟̅

2√θ̅ cos (√θ̅)

√𝑟̅]

(51)

Equations (50) and (51) are the same.

Polar1 From Polar

The transformation equations are shown equations (52) and (53).

𝑟 = 𝑟̅ + 𝜃̅

𝜃 = 𝑟̅ − 𝜃̅

(52)

𝑟̅ =
𝑟 + 𝜃

2

𝜃̅ =
𝑟 − 𝜃

2

(53)

where

 𝑟 > 0

 0 ≤ 𝜃 ≤ 2𝜋

 𝑟̅ > 0

 𝜃̅ ≥ 0

Note: 𝜃̅ can be transformed to the range (0 2𝜋) by subtracting 2𝜋𝑛 for an appropriate 𝑛.

𝐴(𝑝𝑜𝑙𝑎𝑟1, 𝑝𝑜𝑙𝑎𝑟) = [
1 1
1 −1

]

(54)

19

𝐵(𝑝𝑜𝑙𝑎𝑟1, 𝑝𝑜𝑙𝑎𝑟) = [

1

2

1

2
1

2
−

1

2

]

(55)

We will compute the basis vectors and one forms by hand and then compare to the program

output.

𝐸(𝑝𝑜𝑙𝑎𝑟1, 𝑝𝑜𝑙𝑎𝑟) = [
1 1
1 −1

] [
cos(θ) sin(θ)

−𝑟 sin(θ) 𝑟 cos(θ)
]

= [
cos(θ) − 𝑟 sin(θ) sin(θ) + 𝑟 cos(θ)

cos(θ) + 𝑟 sin(θ) sin(θ) − 𝑟 cos(θ)
]

= [
cos(𝑟̅ − 𝜃̅) − (𝑟̅ + 𝜃̅) sin(𝑟̅ − 𝜃̅) sin(𝑟̅ − 𝜃̅) + (𝑟̅ + 𝜃̅) cos(𝑟̅ − 𝜃̅)

cos(𝑟̅ − 𝜃̅) + (𝑟̅ + 𝜃̅) sin(𝑟̅ − 𝜃̅) sin(𝑟̅ − 𝜃̅) − (𝑟̅ + 𝜃̅) cos(𝑟̅ − 𝜃̅)
]

(56)

Equation (57) is the output from the program.

𝐸(𝑝𝑜𝑙𝑎𝑟1, 𝑝𝑜𝑙𝑎𝑟) = [
(θ̅ + 𝑟̅) sin(θ̅ − 𝑟̅) + cos(θ̅ − 𝑟̅) (θ̅ + 𝑟̅) cos(θ̅ − 𝑟̅) − sin(θ̅ − 𝑟̅)

−(θ̅ + 𝑟̅) sin(θ̅ − 𝑟̅) + cos(θ̅ − 𝑟̅) −(θ̅ + 𝑟̅) cos(θ̅ − 𝑟̅) − sin(θ̅ − 𝑟̅)
]

(57)

Equation (56) is the same equation (57) but the sympy simplification changed (𝑟̅ − 𝜃̅) to (𝜃̅ − 𝑟̅)

which is why there are some differences in the signs.

𝑊(𝑝𝑜𝑙𝑎𝑟1, 𝑝𝑜𝑙𝑎𝑟) = [

1

2

1

2
1

2
−

1

2

] [

cos(θ) sin(θ)

−
sin(θ)

𝑟

cos(θ)

𝑟

] = [

cos(θ)

2
−

sin(θ)

2𝑟

sin(θ)

2
+

cos(θ)

2𝑟
cos(θ)

2
+

sin(θ)

2𝑟

sin(θ)

2
−

cos(θ)

2𝑟

]

=

[

cos(𝑟̅ − 𝜃̅)

2
−

sin(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)

sin(𝑟̅ − 𝜃̅)

2
+

cos(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)

cos(𝑟̅ − 𝜃̅)

2
+

sin(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)

sin(𝑟̅ − 𝜃̅)

2
−

cos(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)]

(58)

Simplifying each element of equation (58) ⇒

𝑊11 =
cos(𝑟̅ − 𝜃̅)

2
−

sin(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)
=

(𝑟̅ + 𝜃̅) cos(𝑟̅ − 𝜃̅) − sin(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)

20

𝑊12 =
sin(𝑟̅ − 𝜃̅)

2
+

cos(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)
=

(𝑟̅ + 𝜃̅) sin(𝑟̅ − 𝜃̅) + cos(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)

𝑊21 =
cos(𝑟̅ − 𝜃̅)

2
+

sin(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)
=

(𝑟̅ + 𝜃̅) cos(𝑟̅ − 𝜃̅) + sin(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)

𝑊22 =
sin(𝑟̅ − 𝜃̅)

2
−

cos(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)
=

(𝑟̅ + 𝜃̅) sin(𝑟̅ − 𝜃̅) − cos(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)
 ⇒

𝑊(𝑝𝑜𝑙𝑎𝑟1, 𝑝𝑜𝑙𝑎𝑟) =

[

(𝑟̅ + 𝜃̅) cos(𝑟̅ − 𝜃̅) − sin(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)

(𝑟̅ + 𝜃̅) sin(𝑟̅ − 𝜃̅) + cos(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)

(𝑟̅ + 𝜃̅) cos(𝑟̅ − 𝜃̅) + sin(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)

(𝑟̅ + 𝜃̅) sin(𝑟̅ − 𝜃̅) − cos(𝑟̅ − 𝜃̅)

2(𝑟̅ + 𝜃̅)]

(59)

Equation (06) is the output from the program.

𝑊(𝑝𝑜𝑙𝑎𝑟1, 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛)

=

[

(θ̅ + 𝑟̅) cos(θ̅ − 𝑟̅) + sin(θ̅ − 𝑟̅)

2(θ̅ + 𝑟̅)

−(θ̅ + 𝑟̅) sin(θ̅ − 𝑟̅) + cos(θ̅ − 𝑟̅)

2(θ̅ + 𝑟̅)

(θ̅ + 𝑟̅) cos(θ̅ − 𝑟̅) − sin(θ̅ − 𝑟̅)

2(θ̅ + 𝑟̅)

(−θ̅ − 𝑟̅) sin(θ̅ − 𝑟̅) − cos(θ̅ − 𝑟̅)

2(θ̅ + 𝑟̅)]

(60)

Equation (60) is the output from the program and is the same as equation (59) but the sympy

simplification changed (𝑟̅ − 𝜃̅) to (𝜃̅ − 𝑟̅) which accounts for the differences in signs.

PolarSqrt1 From Polar

The transformation equations are shown in equations (61) and (62).

𝑟 = √𝑟̅ + √𝜃̅

𝜃 = √𝑟̅ − √𝜃̅

(61)

𝑟̅ = [
𝑟 + 𝜃

2
]
2

𝜃̅ = [
𝑟 − 𝜃

2
]
2

(62)

where

21

 𝑟 > 0

 0 ≤ 𝜃 ≤ 2𝜋

 𝑟̅ > 0

 𝜃̅ ≥ 0

Note: 𝜃̅ can be transformed to the range (0 2𝜋) by subtracting 2𝜋𝑛 for an appropriate 𝑛.

Here are the analytic computations of the matrices.

𝐴 = [

𝜕𝑟

𝜕𝑟̅

𝜕𝜃

𝜕𝑟̅
𝜕𝑟

𝜕𝜃̅

𝜕𝜃

𝜕𝜃̅

] =

[

1

2√𝑟̅

1

2√𝑟̅
1

2√𝜃̅
−

1

2√𝜃̅]

(63)

The output from the program is given in equation (64) and is the same as equation (63).

𝐴(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡1, 𝑝𝑜𝑙𝑎𝑟) =

[

1

2√𝑟̅

1

2√𝑟̅
1

2√θ̅
−

1

2√θ̅]

(64)

𝐵 =

[

𝜕𝑟̅

𝜕𝑟

𝜕𝜃̅

𝜕𝑟
𝜕𝑟̅

𝜕𝜃

𝜕𝜃̅

𝜕𝜃]

= [

𝑟 + 𝜃

2

𝑟 − 𝜃

2
𝑟 + 𝜃

2
−

𝑟 − 𝜃

2

] = [
√𝑟̅ √𝜃̅

√𝑟̅ −√𝜃̅
]

(65)

The output from the program is given by equation (66) and is the same as equation (65).

𝐵(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡1, 𝑝𝑜𝑙𝑎𝑟) = [
√𝑟̅ √θ̅

√𝑟̅ −√θ̅
]

(66)

Equation (67) shows that 𝐴 ∙ 𝐵 = 𝐼

𝐴 ∙ 𝐵 =

[

1

2√𝑟̅

1

2√𝑟̅
1

2√𝜃̅
−

1

2√𝜃̅]

[
√𝑟̅ √𝜃̅

√𝑟̅ −√𝜃̅
] = [

1 0
0 1

]

(67)

Again, we use the polar basis vectors derived from cartesian coordinates.

22

𝐸(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡1, 𝑝𝑜𝑙𝑎𝑟) =

[

1

2√𝑟̅

1

2√𝑟̅
1

2√θ̅
−

1

2√θ̅]

[
cos(θ) sin(θ)

−𝑟 sin(θ) 𝑟 cos(θ)
]

=

[

cos(θ) − 𝑟 sin(θ)

2√𝑟̅

sin(θ) + 𝑟 cos (θ)

2√𝑟̅
cos(θ) + 𝑟 sin(θ)

2√θ̅

sin(θ) − 𝑟 cos(θ)

2√θ̅]

Performing the following replacements: 𝑟 = √𝑟̅ + √𝜃̅ and 𝜃 = √𝑟̅ − √𝜃̅ ⇒

[

 cos (√𝑟̅ − √𝜃̅) − (√𝑟̅ + √𝜃̅) sin (√𝑟̅ − √𝜃̅)

2√𝑟̅

sin (√𝑟̅ − √𝜃̅) + (√𝑟̅ + √𝜃̅) cos (√𝑟̅ − √𝜃̅)

2√𝑟̅

cos (√𝑟̅ − √𝜃̅) + (√𝑟̅ + √𝜃̅) sin (√𝑟̅ − √𝜃̅)

2√θ̅

sin (√𝑟̅ − √𝜃̅) − (√𝑟̅ + √𝜃̅) cos (√𝑟̅ − √𝜃̅)

2√θ̅]

(68)

Equation (69) is the output from the program and is the same as equation (68) but the sympy

simplification changed (√𝑟̅ − √𝜃̅) to (√𝜃̅ − √𝑟̅) which accounts for the sign differences.

𝐸(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡1, 𝑝𝑜𝑙𝑎𝑟)

=

[

 (√θ̅ + √𝑟̅) sin (√θ̅ − √𝑟̅) + cos (√θ̅ − √𝑟̅)

2√𝑟̅

(√θ̅ + √𝑟̅) cos (√θ̅ − √𝑟̅) − sin (√θ̅ − √𝑟̅)

2√𝑟̅

− (√θ̅ + √𝑟̅) sin (√θ̅ − √𝑟̅) + cos (√θ̅ − √𝑟̅)

2√θ̅

(−√θ̅ − √𝑟̅) cos (√θ̅ − √𝑟̅) − sin (√θ̅ − √𝑟̅)

2√θ̅]

(69)

𝑊(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡1, 𝑝𝑜𝑙𝑎𝑟) = [
√𝑟̅ √𝑟̅

√θ̅ −√θ̅
] [

cos(θ) sin(θ)

−
sin(θ)

𝑟

cos(θ)

𝑟

] =

= [
√𝑟̅ cos(θ) − √𝑟̅

sin(θ)

𝑟
√𝑟̅ sin(θ) − √𝑟̅

cos(θ)

𝑟

√θ̅ cos(θ) + √θ̅
sin(θ)

𝑟
√θ̅ sin(θ) − √θ̅

cos(θ)

𝑟

]

23

=

[

 𝑟√𝑟̅ cos(θ) − √𝑟̅ sin(θ)

𝑟

𝑟√𝑟̅ sin(θ) − √𝑟̅ cos(θ)

𝑟

𝑟√θ̅ cos(θ) + √θ̅ sin(θ)

𝑟

𝑟√θ̅ sin(θ) − √θ̅ cos(θ)

𝑟]

Performing the following replacements: 𝑟 = √𝑟̅ + √𝜃̅ and 𝜃 = √𝑟̅ − √𝜃̅ ⇒

[

 √𝑟̅ [(√𝑟̅ + √𝜃̅) cos (√𝑟̅ − √𝜃̅) − sin (√𝑟̅ − √𝜃̅)]

(√𝑟̅ + √𝜃̅)

√𝑟̅ [(√𝑟̅ + √𝜃̅) sin (√𝑟̅ − √𝜃̅) − cos (√𝑟̅ − √𝜃̅)]

(√𝑟̅ + √𝜃̅)

√𝜃̅ [(√𝑟̅ + √𝜃̅) cos (√𝑟̅ − √𝜃̅) + sin (√𝑟̅ − √𝜃̅)]

(√𝑟̅ + √𝜃̅)

√𝜃̅ [(√𝑟̅ + √𝜃̅) sin (√𝑟̅ − √𝜃̅) − cos (√𝑟̅ − √𝜃̅)]

(√𝑟̅ + √𝜃̅)]

(70)

Equation (71) is generated from the software.

𝑊(𝑝𝑜𝑙𝑎𝑟𝑆𝑞𝑟𝑡1, 𝑝𝑜𝑙𝑎𝑟)

=

[

 √𝑟̅ ((√θ̅ + √𝑟̅) cos (√θ̅ − √𝑟̅) + sin (√θ̅ − √𝑟̅))

√θ̅ + √𝑟̅

√𝑟̅ (−(√θ̅ + √𝑟̅) sin (√θ̅ − √𝑟̅) + cos (√θ̅ − √𝑟̅))

√θ̅ + √𝑟̅

√θ̅ ((√θ̅ + √𝑟̅) cos (√θ̅ − √𝑟̅) − sin (√θ̅ − √𝑟̅))

√θ̅ + √𝑟̅

√θ̅ ((−√θ̅ − √𝑟̅) sin (√θ̅ − √𝑟̅) − cos (√θ̅ − √𝑟̅))

√θ̅ + √𝑟̅]

(71)

Equation (71) is the same as equation (70) but the sympy simplification changed (√𝑟̅ − √𝜃̅) to

(√𝜃̅ − √𝑟̅) which accounts for the sign differences.

