Math Database
By
Al Bernstein
11/9/2023

http://www.metricmath.com
al@metricmath.com

Introduction

The approach for this writeup is to shift from performing the computations numerically or
symbolically by hand, to automating the computations symbolically using Python and the sympy
library. The idea is to automate and speed up the process of performing the computations while
retaining their generality. The math database will be able to store results from calculations, so
they don’t need to be repeated and can be reused in more complex calculations. The code
associated with this writeup is located at MathDatabase.

Format

In general, coordinates such as polar don’t depend on any other coordinates. For example, you
could create a grid in polar coordinates and plot polar point tuples (r 8) without referencing
cartesian coordinates at all. However, in that case you can’t add vectors by adding their
components algebraically as will be shown. When defining curvilinear coordinates, as we have
in the past, there are a set of ‘new’ coordinates written as linear combinations of a set of ‘old’
coordinates. But to create new vectors by writing them as linear combinations of a set of ‘old’
coordinates, means that the ‘old’ basis vector components need to be able to be added
algebraically and implies that all curvilinear coordinate systems were derived from cartesian
components and that the basis vectors of these coordinate systems are written as cartesian
representations. For example, polar coordinates will be derived from cartesian coordinates, so the
polar basis vectors are written in terms of cartesian components. A new coordinate system
derived from a linear combination of the polar basis vectors, will therefore also be written in
terms of cartesian components.

As we have seen in previous writeups, the relationships between the old and new coordinates is
given by equation (1).

q'(¢’) = q(q) = coordinate relation

(1)

Note: that the primed coordinates are notated by putting a bar above the index. This notation
allows the transformation matrices to be notated in a functional form as functions of the indices.
The transformation of basis vectors from ‘old’ to ‘new coordinates, E to E is given by equation

().

http://www.metricmath.com/
mailto:al@metricmath.com
https://github.com/almetricmath/General-Relativity/tree/main/MathDatabase

da dq* 0 aq" 0
=1 do e ——

6_8q18+ aq" 0

dq" dqtaqt ' aqhaqn
(2)
The A matrix is given by equation (3).
[0 . 94"]
aq] |a 1 aqﬂ
| : | = Ay =AC j) =A(new old)
194 9q' |
l " aqﬁJ rOWcqumn .

In equation (3), the unprimed indices index the rows and the primed indices index the columns of
the A matrix.

Equation (2) in matrix form is given by equation (4)

E =AE
(4)
where
e, =FE= E)_q‘ = basis vectors in q* coordinates = old coordinates
-0 . g . :
=F = 37 = basis vectors in q' coordinates = new coordinates
q

Notice that equation (4) shows that the E matrix gives the new coordinate bases in terms of the
old bases.

Now we show how to do multiple transformations. First, subscript the matrices in equation (4).

E, = ALE;

()
Now perform another transformation using 4, =
E; = AE, = AAEy

(6)

In general,

Ey =Ay_1Ey_1 = Ay_1AN_2 - A E;

()
Equation (8) is the inverse coordinate relation.
q'(q’) = q(q) = inverse coordinate relation
(8)
The following are the transformation equations for the one form bases:
B aqT aqT
d 1 —d 1 . ——dag"
q g + e+ aq" q
_ 0q" aq"
n—_" dgl4+...4 —dg"
dq P + -+ g dq
(9)
Let
aq! aq™
dq’ 0q dq* aq* _
=34 = 3g P i |=B({ J)=B(old new)
q q aql aql
aqn aqn row column
(10)
The transformation of basis one forms from ‘old’ to ‘new coordinates, W to W is given by
equation (11).
W =BTW =
11)

Now we show how to do multiple transformations of the one form bases. Using the same process
as we did with basis vectors, subscript the matrices in equation (11).

W, = [31]TE1

(12)
Now do another transformation using B, =
W3 = [Bz]TEz = [Bz]T[B1]TW1

(13)

In general,

Wy = [BN—l]TWN—l = [BN—I]T[BN—Z]T [B1]TW1
(14)

Equations (4) and (11) show that both the vector and one form bases transformations are given in
terms of old and new coordinates, so we can store the matrices in a record as functions of the
tuple (new old). Remember, the bases are row vectors.

Table 1 shows that the transform matrices can be stored in the database using the following
format:

Variable Name Variable Functional Form
A A(new old)
B B(old new)
Table 1

Both matrices will be stored in a record that will be accessed by the tuple (new old). As stated
before, all the coordinate systems will be derived from cartesian coordinates, so ‘old’ will always
be written in a cartesian representation.

Vector Addition of Polar Basis Vectors using both Cartesian and Polar
Parameters.

To better understand the cartesian representation of basis vectors, we will go through an example
using polar basis vectors. Equation (15) shows the relationships to convert from cartesian to
polar coordinates.

x =1 cos(0)

y = r sin(0)
(15)
Now compute the polar basis vectors. Equation (2) =
d O0xd dyoad d) 0 _
e, = 3 = 3rac + E@ = cos(G)a + sin(0) @ = cos(0)ey + sin(H)e,
_a_axa+aya_ ,(9)a+ (9)6_ n(@)e, + ©
€g = 30 = 90 9x EY: ay = —TrSsSin ax rcos ay = —TrSsSiln (> rcos ey
(16)

It’s clear that e, and ey are in cartesian coordinates.

Now represent the basis vectors in terms of polar parameters.

Let

Wl N

r
6
er(x,y) = [cos (g) sin (g)] = [% ?]

eg(x,y) = [—Zsin (g) 2cos (g)] =[-v/3 1l

(17)
Now convert the basis vectors to use the parametersto (» @) using the inverse coordinate
relationship.
r=x2+y?
y
6 = tan™" (=
an (x)
(18)
Fore,.(x,y) =
_ (1>2 N
"=z 2)~
0 =atan2(£ 1):E =
2 2/ 3
Vs
e (r,0) = [1 §]
(19)
eg(x,y) =
r= \/(—@)2 +()2=2
5n
0 =atan2(1 —/3) = - 2
(20)

5t
eg(r,0) = [2 —
o(1,0) c
Now create a new basis vector that is a linear combination of e,.(x,y) and eg(x,y) =

ere) = o) +eole) = [2 Bz 1=[Lovz Ly

:[1—2\/§ \/§+2]
2 2

ef(x!y) =

r= j(%—@)z+<§+1)z= J(l —22ﬁ>2+<\@2+ 2)2

Simplifying each component separately =

1-2v3\" (1-2v3)(1-2v3) 1-4/3+12 13-4V3
(2)‘ 4 - 4 4

(\/§+2>2_(\/§+2)(\/§+2)_3+4\/§+4_7+4\/§ .
2 - 4 - 4 - 4

- = =
2 2 4 4 4 >

(1—2\/§>2+<\/§+2>2:13—4\/§+7+4\/§:20
=B

V342
1-2V3

0= tan_1< > = 2.154346268990688

e;(r 6)=[v5 2.154346268990688]

(21)

(22)

(23)

(24)

(25)

Now add the polar basis vectors in the (+ 8) parameter form directly without using cartesian
coordinates. Vectors in polar parameters add according to the following formulas®

For
vi(r 0)=[n 64]
v(r 6) =[r2 0]

vu(r 8)+v,(r 0) >

r= \/rlz + 17 + 2ry1yc0s(6; — 6,)

(26)
6 = 01 + atanZ(TZSiTl(Qz - 91) T1 + r2COS(92 - 91))
(27)
0) =1 E]
er(r,)_ 3
5m
eg(r,0) = [2 —
o(r,0) c
ef(r 9) = er(rx 9) + 39(7': 9) =
5t @ T
— 2 2) =) —
r—\]l +2 +2(1)(2)cos(6 3)— 5+4cos(2)—\/§
(28)
6 = 0, + atan2(r,sin(8, — 6;) 1, + r,cos(6, —6,))
0, -0, == =
2 155
. 7-[—
sin (E) =1
T
cos (E) =0 >

ry,sin(@, — 60;) =1, =2

r +1rycos(0,—0,)=r, =1

1 Adding two Polar Vectors

https://math.stackexchange.com/questions/1365622/adding-two-polar-vectors

/i
0 =0, +atan2(2 1) ==+ atan2(2 1) = 2.154346268990688

3
(29)
Using equations (28) and (29) =
ez(r 0)=[V5 2.154346268990688])
30

Equation (30) is the same as equation (25). This discussion shows that curvilinear transformation
equations for basis vectors — equation (2) — implicitly assume the polar basis vectors are in
cartesian coordinates because the vector components are algebraically added. The polar basis
vectors add algebraically in cartesian coordinates but add using more complicated expressions in
polar coordinates. Curvilinear coordinates assume that vector components add algebraically, so
they represent coordinate bases of a general coordinate system in cartesian coordinates. For this
reason, the ‘old” coordinates will always be derived from cartesian coordinates. For example, if
‘old" = "polar’, then it is assumed that ‘polar’ was derived from cartesian coordinates = the
polar basis vectors are in cartesian coordinates and will be shown in later examples.

Database System Outline

The data in the system is processed using the following classes. The classes are written in python
and the sympy library is used for computations.

1.) mathDB class

2.) Various coordinate transformation classes
3.) computeMatrices class

4.) transformRecord class

5.) coordinateRecord class

1.) mathDB
The mathDB class contains the _dictionary attribute which is the main attribute that holds the
various tables. Currently, there are two tables whose attributes are _transformTable and

_coordinateTable. Both of these tables are python dictionaries. The following code, in Figure
1, gets the _transformTable and _coordinateTable from the _dictionary.

._transformTable = self. dictionary["transformTable']

f._coordinateTable self._dictionary['coordinateTable']

Figure 1

Records are retrieved from the transform table and coordinate table using the tuple key
(new old).

where
old = old coordinates string = always derived from cartesian coordinates
new = new coordinates string

The user can specify a string representing the coordinate system. For example, Cartesian to polar
tuple could be (‘polar’ 'cartesian’)

More tables can be added to the dictionary as desired.
An example of how the tables are accessed is given in Figure 2 below.

polarFromCartesianRecord = transformTable[(‘polar’, ‘'cartesian’)]

Figure 2

The _dictionary is saved to a file and loaded from a file using pickle. This file is specified in the
call to the class in the __init__ method and the file is read using the pickle.load command. There
is a close method in the class that writes the _dictionary to the file using the pickle.dump
command.

2.) Various Coordinate Transform Classes
Coordinate classes define the coordinate transformations from an unprimed to a primed
coordinate system in vector form. For example, the coordinate relationship of cartesian in terms

of polar coordinates is shown in equation (15).

x =1 cos(0)

y =1 sin(0)
(15)
where
r>0
0<06<?2n

Equation (15) can be represented in the abstract form of equation (1) as shown in equation (31).

q'(q)) = q@) = [x(r,0) y(r,0)] = [rcos(8) 1 cos(6)] a
1

There are two variable arrays in equation (31) that are shown in equation (32).
[r 6]

[r cos(0) rsin(6)]

(32)

Each coordinate transformation is a class and has two attributes - _params and _vec to represent
equation (1) and to calculate the A matrix.

In terms of equation (31) =

_params = q

_vec = q(q)

The _params attribute for equation (31) is [r 0]

The _vec attribute for equation (32) is [r cos(8) r sin(6)] =

To compute the B matrix, use the inverse coordinate relation defined in equation (6).

qi(qf) = q(q) = inverse coordinate relation

(6)
The inverse relationship of transforming cartesian to polar coordinates is shown in equation (33).

() 0@ =[Ja+y7 tan” (2)]

(33)
We add two attributes to the coordinate classes - _inv_params and _inv_vec =

_inv_params = q =[x Y]

_inv_vec =q(q) = [r(x,y) 0(x,y)] = [\/ x2+y? tan”! (%)]

Figure 3 shows the class to transform from Cartesian to Polar

class polarFromCartesian:

def _init (self, _r, _theta, x, y):

Lf._name = 'polarFromCartesian’'
_params = sp.Array([_r, _theta])
_vec = sp.Array([self._params[@]*sp.cos(self. params[1]), self. params[@]*sp.sin(self._params[1])]) # definitions of x and y
inv_params = sp.Array([_x, _y])
self._inv_vec = sp.Array([sp.sqrt(self._inv_params[@]**2 + self._inv_params[1]**2), sp.atan2(_y, _x)])

Figure 3

10

3.) computeMatrices

The computeMatrices class computes the transform matrices — A and B. The A matrix is defined
by equation (34).

oqt d(_vec)
dq’ aq o dq! d_param,
=37 3a =A; =ACQ j)=| :
q q |aq* d(_vec)
lHTﬁ aan 15 _param,

(34)

Notice in equation (34) that the n*" row of the A matrix is the derivative of the _vec parameter
with respect to _param,, = _param|[n].

The B matrix is defined by equation (35).

aqt oq™ oq 0(Linv_vec)
_aq 0 0('11 . 6%11 - [091] - [O_inv_paraml]
T aq' oq aéT aéi laﬁ a(jnﬁ_vec)

aqn W aqn d_inv_param,,

(35)

Again, notice in equation (35) that the nt" row of the A matrix is the derivative of the _vec
parameter with respect to _param,, = _param|n].

Because the computing pattern is the same for both the A and B matrices, we use a single routine
to compute both. This routine is shown in Figure 4.

def computeTransform(self, _params, _vec):

= len(_params)
ret = sp.Matrix(e, @, [])

r i in range(_n):
ret = ret.row_insert(i, sp.Matrix([sp.diff(_vec, _params[i])]))

return ret

Figure 4

11

To compute the A matrix perform the following call to computeTransform =

self.computeTransform(params, vec)

To compute the B matrix perform the following call to computeTransform =

f.computeTransform(inv_params, 1nv_vec

The computeMatrices class, computes the A and B matrices symbolically using sympy. When
the B matrix is computed using equation (35), we need to make a substitution to get the same
parameters as are in the A matrix. Having the same parameters makes it possible to get the same
result as we do by inverting the A matrix.

As an example, consider the inverse transform - polar in terms of cartesian coordinates.

S e

1 (Y
0=tan1(;)
(18)
ar 26 __7
ax ox [vxz‘F)’ X2 +y?
B=lar a0 X
dy dy Jxt+yr xP+y?
(36)

Equation (36) is the B matrix in rectangular components. The next step is to use a substitution to
convert equation (36) to polar coordinates.

Substitutions in sympy can be done using a dictionary. Equation (15) is the forward transform
equation — cartesian in terms of polar.

x =1 cos(0)
y = r sin(0)
(15)
Equation (15) gives the substitutions we want to use. Now set up a dictionary as follows:
substr = {x:r cos(0),y: r sin(6)}
Replace x by r cos(6), replace y by r sin(8).

The subs function in sympy performs the substitution. The code below substitutes and simplifies
the B matrix =

12

B = B.subs(substr)

B = sympy.simplify(B)

Equation (37) shows the B matrix after the substitution and simplification.

N r
rsin(0) cos(0)

Vr2 r

r cos(0) B sin(e)]

B(polar, cartesian) = |

(37)
Sympy is not simplifying Vr2z — r

We add the substitution for all the parameters = V2 = r and V62 = 8. The code snippet to do
this substitution is shown below in Figure 5.

handle sqrt(r**2) = r
params = _coords._params
sub_str = map(lambda x: sp.sqrt(x**2), params)

sub_str = dict(zip(sub_str, params))
ret = ret.subs(sub_str)
ret = sp.simplify(ret)

Figure 5

Equation (38) shows the resulting B matrix and is the same matrix that we get from inverting the
A matrix.

in(6
cos(B) -— smr()
B =
0
sine) 2(®
T
(38)
The E and W matrices are computed using equations (39).
E = AE
W =BTw
(39)

13

The matrices 4, B, E, and W give all the variables necessary to fill Table 1. Note: £ in the old
system becomes E' in the new coordinate system which is why the transform record uses the
names E and W as opposed to E andW/.

4.) transformRecord

The transform record is shown in Figure 6.

class transformRecord:

printRecord(self, _key):
latex = convertToLatex()

A _latex = latex.convertMatrixToLatex(self._A)
print('A’",str(_key),"' = \n', A_latex, "\n")
E_latex = latex. cnnvertMatrlenLatex(,_L;. E)
print('E’',str(_key), ' = \n', E_latex, '\n")
B_latex = latex. convertMatrleoLatex(::LT. B)
print('B’,str(_key), \n', B_latex, '\n")
W_latex = latex. convertMatrlenLatex(,_L;._w)
print('W’,str(_key), ', W_latex, "\n\n'")

Figure 6

Note: the matrices are sympy Matrix types. Also, there is a printRecord method to output the
matrices in MS Word latex compatible format that can be cut and pasted into Word’s equation
editor in latex mode. Note that in the cases of more complex equations, there can be some
significant rendering time.

14

5.) coordinateRecord

The coordinate record is shown in Figure 7 and includes a printRecord method to output the
coordinate classes various parameters. The _name parameter gives the name of the coordinate
transformation and the remaining parameters are discussed in a previous part of this writeup.

Lf. name = _class._name

Lf._params = _class._params

Lf. vec = _class._vec
Lf._inv_params = _class._inv_params
Lf._inv_vec = _class._inv_vec

m M M m m

=
-

printRecord(self
print("name = self. \n")
print(’_params self. params, '\n")

print(’'_vec = ', self._vec, "\n')
print(’'_inv_params = ', self._inv_params, '\n")

print(’_inv_vec = ', self._inv_vec, '\n'")

Figure 7
Running Matrices for Different Coordinate Transforms
We now run the matrices A, B, E, and W for different coordinate transforms.
Polar From Cartesians
Equations (15) and (18) give the forward and reverse transformations from cartesian to polar.

x =1 cos(0)

y = r sin(0)
(15)
where
r>0
0<0<?2nm

15

_ o1 (Y
0 = tan (x)
(18)
The transform matrices from cartesian to polar coordinates generated by the code are given
below.
) [cos(6) sin(0)
A(polar, cartesian) = | _rsin(8) r cos(8)
(40)
[sin(6
cos(B) -— ©®
B(polar, cartesian) = | c0s(8)
sin(0)
(41)
. [cos(B) sin(0)
E(polar, cartesian) = _rsin(8) 7 cos(8)
(42)
cos(0) sin(0)
W (polar, cartesian) = | sin(0) cos(0)
r r
(43)
PolarSqrt From Polar
The transform equations from polar to polarSqrt are shown in equations (44) and (45).
r=+F
6 =46
(44)
where
F=r?
0 = 62
(45)
where
r>0
0<6<?2m

16

_ 1 0 B
W
A(polarSqrt,polar) = v 1
O [
_ 21/8l
(46)
F 0
B(polarSqrt,polar) = vr =
0 28]
(47)

As stated above, the transformation (polarSqrt, polar) assumes that the polar coordinates were
derived from cartesian coordinates and is why we are using the (polar, cartesian) basis
vectors. We will compute the basis vectors and one forms by hand and then compare to the
program output.

1
E(polarSqrt,polar) = ‘ [_COS(G) sin(0)

2—\/7 0
0 1 [l-rsin(8) 7 cos(8)
2,/8

cos(®) sin@)] | cos(v8) sin(VB)
| 2VF 0F | 2T 27
~ | _rsin(®) rcos(®)| " \/?sin(\/g) T cos (\/5)
28 28 Y T

(48)
The output of the program is given by equation (49) =
CoS (\/6) sin (\/6)]
24T 247
E(polarSqrt,polar) = - —
(polarSqrt,polar) fFsin (\/6) JFcos (\/6)
28 248
(49)

Equations (48) and (49) are the same.

17

W (polarSqrt, polar) = sin(8) cos(0) 24/Bsin(8) 2v/Bcos(0)

r

lzﬁ 0 Hcos(e) sm(e)] [2\/—cos(6) 2+/7cos(0)

N——

2+/7cos (\/6 2+/7cos (\/6)
[2\/§sin (\/6) 2\/§cos (\/6)}
= N

Equation (51) is the output from the program =

2+/7 cos (\/6) 2+/7 sin (\/6)
W (polarSqrt, polar) = [2B sin (\/6) 28 cos (\/6)
1" 7 N

(50)

(51)
Equations (50) and (51) are the same.
Polarl From Polar

The transformation equations are shown equations (52) and (53).

D
1
< =i
| +
D D

(52)

(53)

where
r>0
0<6<?2m
>0
>0

Note: 8 can be transformed to the range (0 27) by subtracting 27zn for an appropriate n.

A(polarl,polar) = H _11]

(54)

18

B(polarl,polar) =

N R DN]| -
(SN

(55)

We will compute the basis vectors and one forms by hand and then compare to the program
output.

cos(0) sin(0)

11
E(pOZaerOlar)_h _1] [—rsin(@) r cos(6)

[cos(ﬂ) —rsin(0) sin(0) + r cos(0)
cos(0) + rsin(0) sin(0) — r cos(0)

[cos(r‘ —0)—(F+6)sin(f—0) sin(f —0) + (F + 0) cos(i — 6)
cos(f—0) + (f+ 6)sin(f —0) sin(f —0) — (¥ + 0) cos(v — 6)

(56)
Equation (57) is the output from the program.

(04 7)sin(0—7)+cos(06—7) (0 +7)cos(B—7)—sin(@ —7)
E(polarl,polar) = _ _ _ _ _ _ 7
(polarl, polar) = | _5 4 7)sin(@—) + cos(®@—7) —(8+) cos(® — 7) — sin(8 — 7)

(57)
Equation (56) is the same equation (57) but the sympy simplification changed (¥ — 8) to (8 — 7)
which is why there are some differences in the signs.

1 1 cos(8) sin(6) cos(e) sm(e) sin(0) N cos(0)
W (polarl,polar) = % 1 sm(e) cos(e) cos(e) sm(e) sinz(e) coize)
2 2 2 2r
cos(f —60) sin(f—80) sin(f—0) cos(if—0)
_ 2 2(7+0) 2 T2+ 0
cos(f —0) sin(f —60) sin(f —0) cos(F —0)
2 26+ 2 2(f+0)

(58)
Simplifying each element of equation (58) =

_cos(F—0) sin(F—0) (7 +80)cos(f —0)— sin(F — 6)
u=r 2G5 +0) 2(7 + 0)

19

_sin(F—0) cos(f—0) (7 +6)sin(—0) + cos(F — 6)
N 27+ 6) 2(7F + 6)

_cos(F—0) sin(F—0) (F+6)cos(F—0)+sin(F — 0)
2 7 207+ 6) 2(7 + 6)

_ sin(7 - 6) _ cos(F — 6) (7 +6)sin(F — 6) — cos(7 — 0)
277 27+ 6) 2(7 + 6)

T+ 0)cos(f —0) —sin(f—0) (F+ 6)sin(¥ —0) + cos(¥ — é)]
207+ 0) 27+ 0)

T+ 0)cos(F —0) +sin(f —0) (¥ + 6)sin(¥ —) — cos(i — é)J
2(r+0) 2(r+9)

W (polarl, polar) = |

(59)
Equation (06) is the output from the program.

W (polarl, cartesian)
[(B+7)cos(®—7) +sin(@—7) —(B+7)sin(®—7) + cos(6 —7)]

_ 20 +7) 20 +7)
B®+7)cos(@—7)—sin(@—7) (=6 —7)sin(0 —7) — cos(B — 1)
20 +7) 200+7)
(60)
Equation (60) is the output from the program and is the same as equation (59) but the sympy
simplification changed (7 — 8) to (8 — 7) which accounts for the differences in signs.
PolarSqrtl From Polar
The transformation equations are shown in equations (61) and (62).
r=vVi+/6
6 =78
(61)
_ [r + 9]2
i
-5
12
(62)
where

20

r>0
0<60<?2rm
>0
=0
Note: 8 can be transformed to the range (0 27) by subtracting 27zn for an appropriate n.

Here are the analytic computations of the matrices.

arae[l 1]

L |77 || 2 |
Cforooep | L |
00 a6l I3 2@l
(63)
The output from the program is given in equation (64) and is the same as equation (63).
1 1]
A(polarSqrtl,polar) = 21/; 2\/1F
28 28
(64)
or 00 r+6 r—20
g=|0r or|_| 2 2 _ VP \/6
or 00 r+60 _r—G V7 _\/5
00 06 2 2
(65)
The output from the program is given by equation (66) and is the same as equation (65).
B(polarSqrtl,polar) = [ﬁ \/E_l
7 -/
(66)
Equation (67) showsthat A- B =1
1 1
Lo |2 nFVE Va]_p1 oo
|1 1 = 5 _[0 1
— |7 /s
e 20
(67)

Again, we use the polar basis vectors derived from cartesian coordinates.

21

1 1

2_\/? 27 cos(0 sin(0
E(polarSqrt1, polar) = 1 1 [—r Sigl()G) rcog(g)
28 26

|

cos(0) —rsin(0) sin(0) + r cos (0)

2\/F 24T

|cos(6) + rsin(0) sin(0) — r cos(0) |

|

2,/6 05

Performing the following replacements: r = V7 + \/5 and 8 = i — \/5 =

cos (V7 B) - (V7)o (7 3) sin (4 ~)+ (¥ + 3} con (v -)

cos(ﬁ—\/g)+(\/?+\/§)sin(\/?—\/§) sin(\/?—\/s)—(\/?+\/5)cos(\/?—\/5)

2\ 27

21/ 2./

(68)

Equation (69) is the output from the program and is the same as equation (68) but the sympy
simplification changed (x/? - \/5) to (\/5 - \/?) which accounts for the sign differences.

E(polarSqrt1,polar)

[(\/6+\/?)sin(\/6—\/?)+cos(\/6—\/?) (\/6+\/?)cos(\/6—\/?)—sin(\/3—\/?)]

2\F 2\T

—(\/6+\/?)sin(\/6—\/?)+cos(\/6—\/?) (—\/ﬁ—ﬁ)cos(\/ﬁ—ﬁ)—sin(\/ﬁ—ﬁ)

2./8 2./8

(69)

7 cos(0) sin(0)
W(polaqurtl,polar)=L/: \/—l sm(B) cos(G)

|

V7 cos(0) — 7
\/Ecos(e)+\/_sm(e) \/Esm(e) \/_COS(G)

DI

sin(0)

JFsin(8) — \/_cos(e)‘

22

rv7 cos(0) —Vrsin(8) V7 sin(0) — V7 cos(0)

_ r r
/o cos(B) + \/Esin(e) r\/a sin(0) — \/6 cos(8)
r r

Performing the following replacements: r = Vi + \/5 and 0 =7 — \/5 =

V(47 + V8)cox (7 =) —sin(F ~VB)] [(VF +B)sin (1 ~F) —cos (47~)|
(V7 +8) (V7 +/0)
\/5[(\/7+\/5)cos (\/?_—\/5)+sin(\/?—\/§)] Vo [(\/?+\/§)Sin(\/?—\/5)—cos(\/?—\/5)]
(V7 ++/0) (v +0)

(70)
Equation (71) is generated from the software.

W (polarSqrt1,polar)

\/?((\/6+\/?)cos(\/§—\/?)+sin(\/§—ﬁ)> ﬁ((ﬁ+ﬁ)5in(‘/§_ﬁ)+cos(\/§_ﬁ))'

= Vo + V7 Vo + V7

= ﬁ((\/s+\/?)cos(\/6—\/?)—sin(ﬁ—ﬁ)) ﬁ((—ﬁ—ﬁ)sin(ﬁ—ﬁ)—cos(\/g—\/?))
Vo7 Vo +F

(71)
Equation (71) is the same as equation (70) but the sympy simplification changed (\/F‘ - \/5) to

(\/5 - \/?) which accounts for the sign differences.

23

