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This note discusses how to work with a general non—orthogonal coordinate system.

Basis Vectors

A vector is specified by a directed line segment that possesses a magnitude and direction as
shown in Figure 1.
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Figure 1

Figure 1 shows a vector - v4 - denoted by bold type.

v, consists of a magnitude - v, — denoted by normal type and a direction angle - 6,.
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Figure 2 shows two non-orthogonal vectors creating a coordinate system.
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Figure 2

Table 1 shows the parameters to describe the vector — magnitude, direction and components - for
the coordinate system of Figure 2.

vector | magnitude | direction Xy - components
121 121 0, a,x + by
12 v, 0, a,x + b,y
Table 1

The next section discusses the dot product between two vectors that will be used to compute the
coordinates of these vectors.

The Dot Product

The dot product of two vectors gives the magnitude of one vector in the direction of the other.
One could think of this as a projection of one vector onto the other. Figure 3 shows the
definition.



51
v,cosf = normalized projection of v, in the direction of v,

Figure 3
Dot product v4 » v, = (normalized projection of v, in the direction of v;) x magnitude of v,
Equation (1) defines the dot product.

Vq " Vy = V1V,C0Sf8

1)
where § = 6, — 6, from Table 1
The component form of the dot product of v, and v, is shown in equation (2)*.
vy * vy = v v,c08(B) = viv,c05(0, — 6;) =
V1V,c0580,c050, + v,v,5in0,sin6; = a,a, + by b, o
2

From the property of cos(6, — 6,)
and the direction of cosines of the components.
x — components from Table 1

v,c080, = a4
v,co0s60, = a,

y — components from Table 1

Ulsinel = bl
Uzsinez = bz

Also note that the dot product is linear
Vi C(Vz +V3) =Cv1°Vy +CVq V3

where c is a constant.

! http://mathworld.wolfram.com/DotProduct.html



Reciprocal Basis Vectors

A note on notation - we’ll adopt a notation of using e; for basis vectors — subscripted indices. In
the basis set pictured in Figure 2, v, will be notated as e; and v, will be notated as e,.

Equation (3) shows an arbitrary vector in the e - e, basis.

v3 = aeq + be,

©)
for real numbers a and b.
A reciprocal basis w! - w? is introduced to compute the components a and b.

Table 2 shows the properties of the w! - w? basis needed to recover the numbers a and b from
V3.

Dot product e w! w?
(1 1 0
() 0 1
Table 2

Equation (4) shows this relationship.

We want w' s e; = I = §';

(4)

where I is the identity matrix — a matrix with 1’s on the diagonal and zeros off the diagonal. This
functions as an identity operator on vectors as shown in equation (5).

Tev=v

(5)

&'; is called the Kronecker delta and is defined below — it’s an identity matrix in index notation.

, li=j
L, =
% {Oi;tj



The w® vectors are called reciprocal vectors or dual vectors. The set of w' reciprocal vectors is
called a reciprocal basis or dual basis. Note that basis vectors are notated with a subscript index -
e; and reciprocal basis vectors are notated with a superscript index w'.

Now define 2 matrices

A=)
and
5[0

where the rows are the basis vectors.
For example

e, = [é11 €12] is a row basis vector.

Equation (4) becomes
BAT =1
SO
B=(A")"1= [“’;]

)

(6)

where
AT is the matrix transpose operation where the rows and columns are interchanged
A~1 is the matrix inverse
Note also
B=@AMYT
To show this

(BA =1I" =1=AB"



So

B=@AMYT"

To complete the notation

Components of basis vectors will be labeled v* — upper index
Components of reciprocal basis vectors will be labeled «; — lower index

Numerical Example

Example vectors are shown in Table 3

vector Xy - components

e1 5x + 9y

e, 7x+ 12y

Table 3

A= [F; 192]

Note the basis vectors are the rows of A

7
_4 §
B=(AN"1= e
3 N
3
7
3|5 9 1 0
T _ _ _
BA" = —_5[7 12]_1_0 1]
3

Note: The reciprocal basis vectors are the rows of B



Table 4 shows the basis and reciprocal basis vectors and their components

vector | xy - components

eq 5x + 9y
e, 7x + 12y

! 7

—4 —

X +53

2
w
3 _ —
x 3 y
Table 4

Notice that these vectors are not normalized and don’t have to be.

The Metric

A vector represents a geometrical object whose characteristics are the same regardless of what
basis set is being used — basis vectors or reciprocal basis vectors - so

v=v'e; =vjw

(7)
where there is an implied summation over repeated indices — called Einstein notation.
SO
vee; =v'e;ce =vw e e; =v; = GV’

(8)

where

G = g;j = e; » e; is called the metric tensor. The metric converts a vector component - vt into
its reciprocal vector component - v;. and will be discussed more thoroughly in a different note.
Also, all combinations of the indices i and j are used so G is a matrix.



From equation (7)

vew =viejew = v e w = v =G 1y,
©)

where

G = gY = w' e o is called the inverse metric and converts a reciprocal vector component v;
into its vector component v*

Multiplying the metric by the inverse metric gives the identity matrix

9ij9’* = (e;e e]-)(w’ cwk) =1

(10)
again there is an implied summation over repeated indices which in this case specifies a matrix
multiplication.

In matrix notation, the metric is given by equation (11)

G = gl] = AAT

(11)
and the inverse matric is given by equation (12)
G—l — gij — BBT

(12)

GG =g;;9’F = AA" BBT

but AT = B~1

SO

GG = AIBT
but

BT = A1

SO

GG l=A4I4"1=



Numerical Example

Table 5 shows 2 vectors in the arbitrary coordinate system from the last example

vector | e; e, - components coordinates
v 3e; +9e, [v! =3,v2 =9]
u e; +1le, [ul = 1,u? = 11]
Table 5

From Table 4 of the previous example

G=aa"= 3 192] [g 172] B }?Lg 19433] 3

amev -[1% 151612 N
14

v="1 B in the vector basis

v=v; = B?gg] in the reciprocal basis

To test, put v in xy coordinates using basis coordinates and reciprocal basis coordinates.

3e; +9e; = 3 [g] +9 [172] - [17385]

—4
7

3

1605w + 2166w?% = 1605

3
2166|-5[ =] "8
' [?] i

so the reciprocal basis coordinates are correct and give the same vector in xy coordinates.



193 —143

4 Zlj=a 3 i
1_ pRT — 317 Zslo| 9 9
G B . 5 [§ —] —143 106
3 9 9

(15)

Test to see if reciprocal basis coordinates - v; - convert back to the vector basis coordinates -v*,

193  —143

i _ 1. _| 9 9 |[1605

vi=G6Tri =143 106 2166] [9]
9 9

(16)

which is correct.

The Dot Product in General Coordinates

Consider two vectors in a general coordinate system.

u=ule; +u’e,

v =vle; +v?e,

The basis vectors in the general coordinate system have properties shown in Table 2 - so to get
the correct orthogonality condition - we need to multiply one vector in vector coordinates by the
other in the reciprocal vector coordinates as shown in equation (17).

First put u in the reciprocal basis.

u=ule; +ule, = yyw! + u,w?
(17)

Then take the dot product and use the linearity properties of the dot product.

Ue D = (ulwl + uzwz) . (vlel + 1]26’2) = ulvlwl eeq + ulvzwl e ey +
UV w? e ey + U’ w? 0 e,

10



)
usv=uv'w e, +u,v’w? e e, = u; vt + u,v?

(18)

From the last section we know that the metric can lower a coordinate index — go from v* to v;
and the inverse metric can raise a coordinate index — go from v; to v*.

So the metric and inverse metric can be used to compute a dot product in general coordinates as
shown in equation (19).

u; = Gu

uev =g vul = (Gui)Tv = gYvu; = (67 'u)Ty;
(19)

where we treat v; and u; as column vectors and are the coordinates of the reciprocal basis

vectors.

Numerical Example

First calculate v and u in Cartesian coordinates to check the dot product.

v="v'e; = 3e; +9e, = 3 [g] +9 [172] - 17385]
u=nule; =le; +1le, = 1 [g] +11 [172] = 18421]
veu=[78 135] [18421 = 25431

Now check the dot product with the metric computed in the last example.

106 143

gyv'w =vi6(u) =[3 9] [143 93

][111] = 25431

This is correct.

Now check the dot product with the inverse metric.

11



u; = G(ul) = [106 143”11] 1679]

143 2266
193 —143
[1679
1

9Yvu; = W)T6 u; = [1605 2166] -143 106 2266 25431
(20)
This is correct.
Coordinate Transforms
From Table 4
a= [7 12]
But these coordinates are in terms of x-y coordinates
Equation (21) shows the vector basis as a coordinate transformation.
e = Ax
(21)

In general transforming from one general basis to another is shown in equations (22) and (23) for
vector and reciprocal vector basis.

e = Ae

(22)
Reciprocal basis
w =Bw

(23)

Because a vector is a geometric object, the components times the basis in one coordinate system
should equal components times the basis in the other.

[‘T)i]Té — [Ui]Te

12



So

(cv)TAe = [vi]Te
[v]TCcT Ae = [vi]Te
S0

CTA=1
C=(ADT

But from equation (6)

B = (AT)—l — (A—I)T

so C is the B matrix
SO

vt = Bv!

To transform the reciprocal vector components v;

1_71' = Cvi

SO
[1_7i]TCTBw = [vi]Tw

SO

13

(6)

(24)



CTB =1

B=(c"H™1
SO
cC=A

(25)

Figure 4 is a summary of all the relationships between vectors, dual vectors, and their
coordinates.

A e; \U; 1
4 e, v; BT
BG-1BT AGAT G G
A 7y
(T)i ot B wi’ v 2
3 AT >
Figure 4
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For example, starting at Node 3 and following the red arrows produces equation (26)

v; = AGATY
(26)
For v!, and v; in Cartesian coordinates
G=1
and
v; = AATY' = GV
(27)
which is the same as equation (8) without the overlines.
v; = GV’
(8)
Starting at Node 4 and following the green arrows we get
v' = BG'B"y; = G,
For v%, and v; in Cartesian coordinates
Gl=1
v' = BBy, = G 17,
which is the same as equation (9) without the overlines
vt = ¢ 1y,
(9)
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