
1 

 

General Coordinates 

By 

Al Bernstein 
www.metricmath.com 

al@metricmath.com 

 

 

This note discusses how to work with a general non–orthogonal coordinate system. 

 

Basis Vectors 
 

 

A vector is specified by a directed line segment that possesses a magnitude and direction as 

shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 1 

 

 

Figure 1 shows a vector - 𝒗𝟏 - denoted by bold type. 

 

𝒗𝟏 consists of a magnitude - 𝑣1 – denoted by normal type and a direction angle - 𝜃1. 
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Figure 2 shows two non-orthogonal vectors creating a coordinate system. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2 

 

 

 

Table 1 shows the parameters to describe the vector – magnitude, direction and components - for 

the coordinate system of Figure 2. 

 

 

vector magnitude direction 𝒙𝒚 - components 

𝒗𝟏 𝑣1 𝜃1 𝑎1𝒙 + 𝑏1𝒚 

𝒗𝟐 𝑣2 𝜃2 𝑎2𝒙 + 𝑏2𝒚 

 

 

Table 1 

 

The next section discusses the dot product between two vectors that will be used to compute the 

coordinates of these vectors. 

 

 

The Dot Product 
 

 

The dot product of two vectors gives the magnitude of one vector in the direction of the other. 

One could think of this as a projection of one vector onto the other. Figure 3 shows the 

definition. 
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 Figure 3 

 

Dot product 𝒗𝟏 • 𝒗𝟐 ≡ (normalized projection of 𝒗𝟐 in the direction of 𝒗𝟏) × magnitude of 𝒗𝟏 

 

Equation (1) defines the dot product. 

 

𝒗𝟏 ∙ 𝒗𝟐 = 𝑣1𝑣2𝑐𝑜𝑠𝛽 

            (1) 

 

where 𝛽 = 𝜃2 − 𝜃1 from Table 1 

 

The component form of the dot product of 𝒗𝟏 and 𝒗𝟐 is shown in equation (2)1. 

 

𝒗𝟏 • 𝒗𝟐 = 𝑣1𝑣2𝑐𝑜𝑠(𝛽) = 𝑣1𝑣2𝑐𝑜𝑠(𝜃2 − 𝜃1) =        

 

𝑣1𝑣2𝑐𝑜𝑠𝜃2𝑐𝑜𝑠𝜃1 + 𝑣1𝑣2𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1 = 𝑎1𝑎2 + 𝑏1𝑏2 

            (2) 

 

From the property of 𝑐𝑜𝑠(𝜃2 − 𝜃1) 

 

and the direction of cosines of the components. 

 

𝑥 – components from Table 1 

 

𝑣1𝑐𝑜𝑠𝜃1 = 𝑎1 

𝑣2𝑐𝑜𝑠𝜃2 = 𝑎2 

 

𝑦 – components from Table 1 

 

𝑣1𝑠𝑖𝑛𝜃1 = 𝑏1 

𝑣2𝑠𝑖𝑛𝜃2 = 𝑏2 

 

Also note that the dot product is linear  

 

𝒗𝟏 • 𝑐(𝒗𝟐 + 𝒗𝟑) = 𝑐𝒗𝟏 • 𝒗𝟐 + 𝑐𝒗𝟏 • 𝒗𝟑 

 

where 𝑐 is a constant. 

                                                
1 http://mathworld.wolfram.com/DotProduct.html 

𝜷 

𝒗𝟐 

𝒗𝟏 

𝑣2𝑐𝑜𝑠𝛽 ≡ normalized projection of 𝒗𝟐 in the direction of 𝒗𝟏 
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Reciprocal Basis Vectors 
 

A note on notation - we’ll adopt a notation of using 𝒆𝒊 for basis vectors – subscripted indices. In 

the basis set pictured in Figure 2, 𝒗𝟏 will be notated as 𝒆𝟏 and 𝒗𝟐 will be notated as 𝒆𝟐. 

 

Equation (3) shows an arbitrary vector in the 𝒆𝟏 - 𝒆𝟐 basis. 

 

𝒗𝟑 = 𝑎𝒆𝟏 + 𝑏𝒆𝟐 

            (3) 

 

for real numbers 𝑎 and 𝑏. 

 

A reciprocal basis 𝝎𝟏 - 𝝎𝟐 is introduced to compute the components 𝑎 and 𝑏. 

 

Table 2 shows the properties of the 𝝎𝟏 - 𝝎𝟐 basis needed to recover the numbers 𝑎 and 𝑏 from 

𝒗𝟑. 

 

Dot product • 𝝎𝟏 𝝎𝟐 

𝒆𝟏 1 0 

𝒆𝟐 0 1 

 

   Table 2 

 

Equation (4) shows this relationship. 

 

We want 𝝎𝒊 • 𝒆𝒋 = 𝑰 = 𝛿𝑖
𝑗 

            (4) 

 

where 𝑰 is the identity matrix – a matrix with 1’s on the diagonal and zeros off the diagonal. This 

functions as an identity operator on vectors as shown in equation (5). 

 

𝑰 • 𝒗 = 𝒗 

            (5) 

 

𝛿𝑖
𝑗 is called the Kronecker delta and is defined below – it’s an identity matrix in index notation. 

 

𝛿𝑖
𝑗 = {

1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗
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The 𝝎𝒊 vectors are called reciprocal vectors or dual vectors. The set of 𝝎𝒊 reciprocal vectors is 

called a reciprocal basis or dual basis. Note that basis vectors are notated with a subscript index - 

𝒆𝒊 and reciprocal basis vectors are notated with a superscript index 𝝎𝒊. 

 

 

Now define 2 matrices 

 

𝑨 = [
𝒆𝟏

𝒆𝟐
] 

 

and  

 

𝑩 = [𝝎𝟏

𝝎𝟐
] 

 

 

where the rows are the basis vectors. 

 

For example 

 

𝒆𝟏 = [𝑒11 𝑒12] is a row basis vector. 

 

 

Equation (4) becomes 

 

𝑩𝑨𝑻 = 𝑰 

 

so 

 

𝑩 = (𝑨𝑻)−𝟏 = [𝝎𝟏

𝝎𝟐
] 

            (6) 

 

where 

 

𝑨𝑻 is the matrix transpose operation where the rows and columns are interchanged 

 

𝑨−𝟏 is the matrix inverse 

 

Note also 

 

𝑩 = (𝑨−𝟏)𝑻 

 

To show this 

 

(𝑩𝑨𝑻)𝑻 = 𝑰𝑻 = 𝑰 = 𝑨𝑩𝑻 
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So  

 

𝑩 = (𝑨−𝟏)𝑻 

 

 

To complete the notation  

 

Components of basis vectors will be labeled 𝑣𝑖  – upper index 

Components of reciprocal basis vectors will be labeled 𝛼𝑖 – lower index 

 

 

Numerical Example 
 

Example vectors are shown in Table 3 

 

vector 𝒙𝒚 - components 

𝒆𝟏 5𝒙 + 9𝒚 

𝒆𝟐 7𝒙 + 12𝒚 

 

 Table 3 

 

 

𝑨 = [5 9
7 12

] 

 

Note the basis vectors are the rows of 𝑨 

 

𝑩 = (𝑨𝑻)−𝟏 = [
−4

7

3

3
−5

3

] 

 

𝑩𝑨𝑻 = [
−4

7

3

3
−5

3

] [5 9
7 12

] = 𝑰 = [
1 0
0 1

] 

 

Note: The reciprocal basis vectors are the rows of 𝑩 

  



7 

 

 

Table 4 shows the basis and reciprocal basis vectors and their components 

 

vector 𝒙𝒚 - components 

𝒆𝟏 5𝒙 + 9𝒚 

𝒆𝟐 7𝒙 + 12𝒚 

𝝎𝟏 
−4𝒙 +

7

3
𝒚 

𝝎𝟐 
3𝒙 −

5

3
𝒚 

 

 Table 4 

 

 

Notice that these vectors are not normalized and don’t have to be. 

 

 

The Metric 
 

A vector represents a geometrical object whose characteristics are the same regardless of what 

basis set is being used – basis vectors or reciprocal basis vectors - so 

 

𝒗 = 𝑣𝑖 𝒆𝒊 = 𝑣𝑗𝝎𝒋 

            (7) 

 

where there is an implied summation over repeated indices – called Einstein notation.  

 

so 

 

𝒗 • 𝒆𝒋 = 𝑣𝑖 𝒆𝒊 • 𝒆𝒋 = 𝑣𝑗𝝎𝒋 • 𝒆𝒋 = 𝑣𝑗 = 𝑮𝑣𝑖 

            (8) 

 

where  

 

𝑮 = 𝑔𝑖𝑗 = 𝒆𝒊 • 𝒆𝒋  is called the metric tensor. The metric converts a vector component - 𝑣𝑖 into 

its reciprocal vector component - 𝑣𝑗. and will be discussed more thoroughly in a different note. 

Also, all combinations of the indices 𝑖 and 𝑗 are used so 𝑮 is a matrix. 
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From equation (7)  

 

𝒗 • 𝝎𝒋 = 𝑣𝑖𝒆𝒊 • 𝝎𝒋 = 𝑣𝑖𝝎𝒊 • 𝝎𝒋 = 𝑣𝑖 = 𝑮−𝟏𝑣𝑖 

            (9) 

where 

 

𝑮−𝟏 = 𝑔𝑖𝑗 = 𝝎𝒊 • 𝝎𝒋 is called the inverse metric and converts a reciprocal vector component 𝑣𝑖 

into its vector component 𝑣𝑖  

 

Multiplying the metric by the inverse metric gives the identity matrix 

 

𝑔𝑖𝑗𝑔𝑗𝑘 = (𝒆𝒊 • 𝒆𝒋)(𝝎𝒋 • 𝝎𝒌) = 𝑰 

            (10) 

again there is an implied summation over repeated indices which in this case specifies a matrix 

multiplication. 

 

In matrix notation, the metric is given by equation (11) 

 

𝑮 = 𝑔𝑖𝑗 = 𝑨𝑨𝑻 

            (11) 

and the inverse matric is given by equation (12) 

 

𝑮−𝟏 = 𝑔𝑖𝑗 = 𝑩𝑩𝑻 

            (12) 

 

 

𝑮𝑮−𝟏 = 𝑔𝑖𝑗𝑔𝑗𝑘 =  𝑨𝑨𝑻 𝑩𝑩𝑻 

 

but 𝑨𝑻 = 𝑩−𝟏 

 

so 

 

𝑮𝑮−𝟏 = 𝑨𝑰𝑩𝑻 

 

but 

 

𝑩𝑻 = 𝑨−𝟏 

 

so 

 

𝑮𝑮−𝟏 = 𝑨𝑰𝑨−𝟏 = 𝑰 

 

  



9 

 

 

Numerical Example 
 

Table 5 shows 2 vectors in the arbitrary coordinate system from the last example 

 

vector 𝒆𝟏 𝒆𝟐 - components coordinates 

𝒗 3𝒆𝟏 + 9𝒆𝟐 [𝑣1 = 3, 𝑣2 = 9] 
𝒖 𝒆𝟏 + 11𝒆𝟐 [𝑢1 = 1, 𝑢2 = 11] 

 

   Table 5 

 

 

From Table 4 of the previous example 

 

𝑮 = 𝑨𝑨𝑻 = [5 9
7 12

] [5 7
9 12

] = [
106 143
143 93

] 

            (13) 

 

𝑣𝑖 = 𝑮𝑣𝑖 = [
106 143
143 93

] [
3
9

] = [1605
2166

] 

            (14) 

 

𝒗 = 𝑣𝑖 = [
3
9

] in the vector basis 

 

𝒗 = 𝑣𝑖 = [1605
2166

] in the reciprocal basis 

 

To test, put 𝒗 in 𝒙𝒚 coordinates using basis coordinates and reciprocal basis coordinates. 

 

3𝒆𝟏 + 9𝒆𝟐 =  3 [5
9

] + 9 [
7

12
] = [

78
135

]  

 

 

1605𝝎𝟏 + 2166𝝎𝟐 =  1605 [
−4
7

3

] + 2166 [
3

−5

3

] = [
78

135
] 

 

so the reciprocal basis coordinates are correct and give the same vector in 𝒙𝒚 coordinates. 
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𝑮−𝟏 = 𝑩𝑩𝑻 = [
−4

7

3

3
−5

3

] [
−4 3
7

3

−5

3

] = [

193

9

−143

9
−143

9

106

9

] 

            (15) 

 

Test to see if reciprocal basis coordinates - 𝑣𝑖 - convert back to the vector basis coordinates -𝑣𝑖 . 

 

𝑣𝑖 = 𝑮−𝟏𝑣𝑖 = [

193

9

−143

9
−143

9

106

9

] [1605
2166

] = [
3
9

] 

            (16) 

 

which is correct. 

 

The Dot Product in General Coordinates 
 

 

Consider two vectors in a general coordinate system. 

 

𝒖 = 𝑢1𝒆𝟏 + 𝑢2𝒆𝟐 

 

𝒗 = 𝑣1𝒆𝟏 + 𝑣2𝒆𝟐 

 

The basis vectors in the general coordinate system have properties shown in Table 2 - so to get 

the correct orthogonality condition - we need to multiply one vector in vector coordinates by the 

other in the reciprocal vector coordinates as shown in equation (17). 

 

 

First put 𝒖 in the reciprocal basis. 

 

𝒖 = 𝑢1𝒆𝟏 + 𝑢2𝒆𝟐 = 𝑢1𝝎𝟏 + 𝑢2𝝎𝟐 

            (17) 

 

Then take the dot product and use the linearity properties of the dot product. 

 

𝒖 • 𝒗 = (𝑢1𝝎𝟏 + 𝑢2𝝎𝟐) • (𝑣1𝒆𝟏 + 𝑣2𝒆𝟐) = 𝑢1𝑣1𝝎𝟏 • 𝒆𝟏 + 𝑢1𝑣2𝝎𝟏 • 𝒆𝟐 + 

𝑢2𝑣1𝝎𝟐 • 𝒆𝟏 + 𝑢2𝑣2𝝎𝟐 • 𝒆𝟐 

 

But   

 

𝝎𝒊 • 𝒆𝒋 = 𝑰 = 𝛿𝑖
𝑗 
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so 

 

𝒖 • 𝒗 = 𝑢1𝑣1𝝎𝟏 • 𝒆𝟏 + 𝑢2𝑣2𝝎𝟐 • 𝒆𝟐 = 𝑢1𝑣1 + 𝑢2𝑣2 

            (18) 

 

 

From the last section we know that the metric can lower a coordinate index – go from 𝑣𝑖  to 𝑣𝑖 

and the inverse metric can raise a coordinate index – go from 𝑣𝑖 to 𝑣𝑖 . 

 

So the metric and inverse metric can be used to compute a dot product in general coordinates as 

shown in equation (19). 

 

𝑢𝑖 = 𝑮𝑢𝑖 

 

𝒖 • 𝒗 = 𝑔𝑖𝑗𝑣𝑖 𝑢𝑗 = (𝑮𝑢𝑖)
𝑻

𝒗 = 𝑔𝑖𝑗𝑣𝑖𝑢𝑗 = (𝑮−𝟏𝑢𝑖)𝑻𝑣𝒊 

            (19) 

 

where we treat 𝑣𝑖 and 𝑢𝑖 as column vectors and are the coordinates of the reciprocal basis 

vectors. 

 

 

Numerical Example 
 

First calculate 𝒗 and 𝒖 in Cartesian coordinates to check the dot product. 

 

𝒗 = 𝑣𝑖 𝒆𝒊 = 3𝒆𝟏 + 9𝒆𝟐 =  3 [5
9

] + 9 [
7

12
] = [

78
135

] 

 

𝒖 = 𝑢𝑖𝒆𝒊 = 1𝒆𝟏 + 11𝒆𝟐 =  1 [5
9

] + 11 [
7

12
] = [

82
141

] 

 

𝒗 • 𝒖 = [78 135] [
82

141
] = 25431 

 

Now check the dot product with the metric computed in the last example. 

 

𝑔𝑖𝑗𝑣𝑖 𝑢𝑗 = 𝑣𝑖 𝑮(𝑢𝑖)
𝑇

= [3 9] [
106 143
143 93

] [
1

11
] = 25431 

 

This is correct. 

 

Now check the dot product with the inverse metric. 
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𝑢𝑖 = 𝑮(𝑢𝑖)
𝑇

= [
106 143
143 93

] [
1

11
] = [

1679
2266

] 

 

𝑔𝑖𝑗𝑣𝑖𝑢𝑗 = (𝑣𝑖)
𝑻𝑮−𝟏𝑢𝑖 = [1605 2166] [

193

9

−143

9
−143

9

106

9

] [
1679
2266

] = 25431 

            (20) 

 

This is correct. 

 

Coordinate Transforms 
 

From Table 4 

 

𝑨 = [5 9
7 12

] 

 

But these coordinates are in terms of 𝒙-𝒚 coordinates 

 

Equation (21) shows the vector basis as a coordinate transformation. 

 

𝒆 = 𝑨𝒙 

            (21) 

 

In general transforming from one general basis to another is shown in equations (22) and (23) for 

vector and reciprocal vector basis. 

 

 

𝒆̅ = 𝑨𝒆 

            (22) 

Reciprocal basis 

 

𝝎̅ = 𝑩𝝎 

            (23) 

 

To transform the vector components 

 

𝒗̅𝒊 = 𝑪𝒗𝒊 

 

Because a vector is a geometric object, the components times the basis in one coordinate system 

should equal components times the basis in the other. 

 

[𝒗̅𝒊]𝑻𝒆̅ = [𝒗𝒊]𝑻𝒆 
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So 

 

(𝑪𝒗𝒊)𝑻𝑨𝒆 = [𝒗𝒊]𝑻𝒆 

 

[𝒗𝒊]𝑻𝑪𝑻𝑨𝒆 = [𝒗𝒊]𝑻𝒆 

 

so 

 

𝑪𝑻𝑨 = 𝑰 

 

𝑪 = (𝑨−𝟏)𝑻 

 

But from equation (6) 

 

𝑩 = (𝑨𝑻)−𝟏 = (𝑨−𝟏)𝑻 

            (6) 

 

so 𝑪 is the 𝑩 matrix 

 

so 

 

𝒗̅𝒊 = 𝑩𝒗𝒊 

            (24) 

 

To transform the reciprocal vector components 𝒗𝒊 

 

𝒗̅𝒊 = 𝑪𝒗𝒊 

 

 

[𝒗̅𝒊]
𝑻𝝎̅ = [𝒗̅𝒊]

𝑻𝝎 

 

 

 

(𝑪𝒗𝒊)
𝑻𝑩𝝎 = 𝒗𝒊𝝎 

 

so 

 

[𝒗̅𝒊]
𝑻𝑪𝑻𝑩𝝎 = [𝒗𝒊]

𝑻𝝎 

 

so 
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𝑪𝑻𝑩 = 𝑰 

 

𝑩 = (𝑪𝑻)−𝟏 

 

so 

 

𝑪 = 𝑨 

            (25) 

 

 

Figure 4 is a summary of all the relationships between vectors, dual vectors, and their 

coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 4 

 

  

𝑮−𝟏 𝑮 

 

𝑩 

𝑨𝑻 
 

𝑨 

𝑩𝑻 
𝒆𝒊 ,𝒗𝒊  

𝒆̅𝒊 , 𝒗̅𝒊 

 

𝝎̅𝒊, 𝒗̅𝒊  
 

𝝎𝒊, 𝒗𝒊  
 

𝑩𝑮−𝟏𝑩𝑻 

 

𝑨𝑮𝑨𝑻 

1 

2 
3 

4 
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For example, starting at Node 3 and following the red arrows produces equation (26) 

 

𝒗̅𝒊 = 𝑨𝑮𝑨𝑻𝒗̅𝒊 

            (26) 

 

For 𝒗𝒊, and 𝒗𝒊 in Cartesian coordinates 

 

𝑮 = 𝑰  

 

and 

 

𝒗̅𝒊 = 𝑨𝑨𝑻𝒗̅𝒊 = 𝑮̅𝒗̅𝒊 

            (27) 

 

which is the same as equation (8) without the overlines. 

 

𝑣𝑗 = 𝑮𝑣𝑖  

            (8) 

 

Starting at Node 4 and following the green arrows we get  

 

𝒗̅𝒊 = 𝑩𝑮−𝟏𝑩𝑻𝒗̅𝒊 = 𝑮̅−𝟏𝒗̅𝒊 

 

For 𝒗𝒊, and 𝒗𝒊 in Cartesian coordinates 

 

𝑮−𝟏 = 𝑰 

 

𝒗̅𝒊 = 𝑩𝑩𝑻𝒗̅𝒊 = 𝑮̅−𝟏𝒗̅𝒊 

 

which is the same as equation (9) without the overlines 

 

𝑣𝑖 = 𝑮−𝟏𝑣𝑖 

            (9) 

 

 

 


