
1 
 

Coordinates Summary 

By 

Al Bernstein 
11/9/2021 

http://www.metricmath.com 

al@metricmath.com 
 

Introduction 

 

This writeup provides a coordinate summary for reference. It is updated from earlier write ups in 

several ways. First, it explicitly includes the basis vectors. This is helpful when we look at 

geometric invariants where the area or volume of the basis set needs to be considered. Second, 

while earlier writeups were correct, the notation for the linear algebra was mixed and used both 

row and column vectors as default depending on the situation. In this writeup, row vectors are 

the default. 

 

Basis Vectors 

 

Given a set of basis vectors which are linearly independent and span the space, we can write an 

arbitrary vector as a linear combination of the basis. “Linear independence” means that no two 

basis vectors are parallel. “Span the space” means that any vector in the space can be written in 

terms of the basis vectors. Note: the basis vectors are not assumed to be orthogonal or 

normalized. If there are 𝑛 basis vectors, then an arrbitrary vector will have 𝑛 components. 

 

A general basis set will be represented by a matrix as shown in equation (1). 

 

𝐸 = [

𝒆𝟏

⋮
𝒆𝒏

] = [

𝑒11 ⋯ 𝑒1𝑛

⋮ ⋱ ⋮
𝑒𝑛1 ⋯ 𝑒𝑛𝑛

] 

(1) 

 

where  

 each row of 𝐸 is a basis vector 

 the default vector is a row vector 

 

In a general basis, a vector can be represented by equation (2). 

 

𝒗 = 𝑣𝑖𝐸 

(2) 

where  

 𝑣𝑖 is a row vector of components in the basis 𝐸. 
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Equation (3) expands equation (2). 

 

𝑣𝑖𝐸 = 𝑣1𝒆𝟏 + ⋯+ 𝑣𝑛𝒆𝒏 = 𝑣1[𝑒11 ⋯ 𝑒1𝑛] + 𝑣2[𝑒21 ⋯ 𝑒2𝑛] + ⋯+ 𝑣𝑛[𝑒𝑛1 ⋯ 𝑒𝑛𝑛] 
(3) 

The basis vector components themselves need coordinates which are typically cartesian. 

 

Example 1 
 

Let the basis vectors in a two-dimensional space be the following: 

 

𝒆𝟏 = [√3 1] 
 

𝒆𝟐 = [2 2√3] 
(4) 

These basis vectors are not orthogonal or normalized. Note: they are given in cartesian 

coordinates, 

 

𝐸 = [√3 1

2 2√3
] 

(5) 

Pick a vector in this coordinate system ⇒ 

 

𝑢𝑖 = [1 2] 
 

Multiplying by basis vectors - 𝐸 - gives 𝒖 in cartesian coordinates. 

 

𝒖 = 𝑢𝑖𝐸 = [1 2] [√3 1

2 2√3
] = [√3 + 4 4√3 + 1] 

(6) 

 

Pick another vector in this coordinate system 

 

𝑣𝑖 = [3 4] 
 

𝒗 = 𝑣𝑖𝐸 = [3 4] [√
3 1

2 2√3
] = [3√3 + 8 8√3 + 3] 

(7) 

Equation (7) gives 𝒗 in cartesian coordinates. 
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Dot Product 

 

Compute the dot product in a general basis. Define two vectors as shown in equation (8). 

 

𝒖 = 𝑢𝑖𝐸 

 

𝒗 = 𝑣𝑖𝐸 

(8) 

 

Taking the dot product of these two vectors ⇒ 

 

𝒖 ∙ 𝒗 = 𝒖𝒗𝑻 = 𝑢𝑖𝐸(𝑣𝑖𝐸)
𝑇

= 𝑢𝑖𝐸𝐸𝑇(𝑣𝑖)
𝑇

= 𝑢𝑖𝐺(𝑣𝑖)
𝑇
 

(9) 

 

Equation (9) gives the formula for a dot product in a general basis. The expression 𝐸𝐸𝑇 is called 

the metric and is denoted by 𝐺. It gives a measure of distance. This can be seen by using the dot 

product to find the magnitude of a vector. 

 

|𝒖| = √𝒖 ∙ 𝒖 = √𝑢𝑖𝐺(𝑢𝑖)𝑇 

(10) 

 

Example 2 
 

𝑢𝑖 = [1 2] 
 

𝑣𝑖 = [3 4] 
 

𝐺 = 𝐸𝐸𝑇 = [√3 1

2 2√3
] [√3 2

1 2√3
] = [ 4 4√3

4√3 16
] 

(11) 

𝒖 ∙ 𝒗 = 𝑢𝑖𝐺(𝑣𝑖)
𝑇

= [1 2] [ 4 4√3

4√3 16
] [

3
4
] = [1 2] [12 + 16√3

12√3 + 64
] = 

 

= 12 + 16√3 + 24√3 + 128 = 40√3 + 140 

(12) 

 

Computing the dot product in cartesian coordinates from equations (6) and (7)⇒ 

 

𝒖 ∙ 𝒗 = [√3 + 4 4√3 + 1] [3√3 + 8

8√3 + 3
] = (√3 + 4)(3√3 + 8) + (4√3 + 1)(8√3 + 3) 

 

= 9 + 8√3 + 12√3 + 32 + 96 + 12√3 + 8√3 + 3 = 40√3 + 140 

 

As expected, this is the same result as equation (12). 
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We can create a new basis 𝑊 called a reciprocal basis to simplify the dot product calculation by 

removing the need for 𝐺 in equation (9). Replacing 𝐸 by 𝑊 in equation (9) and lowering the 

index on 𝑢 to indicate that its components are in the reciprocal basis ⇒ 

 

𝒖 ∙ 𝒗 = 𝑢𝑖𝑊𝐸𝑇(𝑣𝑖)
𝑇
 

(13) 

 

Now set 𝑊𝐸𝑇 = 𝐼 ⇒ 

 

𝑊 = (𝐸𝑇)−1 = (𝐸−1)𝑇 

(14) 

 

𝑊 is the reciprocal basis and 𝑢𝑖 are the components of 𝒖 in that basis. 

 

Equation (13) ⇒ 

 

𝒖 ∙ 𝒗 = 𝑢𝑖(𝑣
𝑖)

𝑇
 

(15) 

 

𝑊𝐸𝑇 = (𝐸−1)𝑇𝐸𝑇 = 𝐼 = 𝐼𝑇 = 𝐸𝐸−1 = 𝐸𝑊𝑇 

(16) 

 

Using equation (16), the dot product can be written as  

 

𝒖 ∙ 𝒗 = 𝑢𝑖𝐸𝑊𝑇(𝑣𝑖)
𝑇 = 𝑢𝑖(𝑣𝑖)

𝑇 

(17) 

 

Equation (17) simply represents the dot product by raising 𝑢′𝑠 index and by lowering 𝑣′𝑠 index. 

 

The dot product can also be computed using the reciprocal basis components only. 

 

𝒖 = 𝑢𝑖𝑊 

𝒗 = 𝑣𝑖𝑊 

(18) 

 

𝒖 ∙ 𝒗 = 𝒖𝒗𝑻 = 𝑢𝑖𝑊(𝑣𝑖𝑊)𝑇 = 𝑢𝑖𝑊𝑊𝑇(𝑣𝑖)
𝑇 

(19) 

 

The expression 𝑊𝑊𝑇 is called the inverse metric and is denoted by 𝐺−1 

 

Note: 𝐺𝐺−1 = 𝐸𝐸𝑇𝑊𝑊𝑇 = 𝐸𝑊𝑇 = 𝐼 

 

Equation (19) ⇒ 
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𝒖 ∙ 𝒗 = 𝑢𝑖𝐺
−1(𝑣𝑖)

𝑇 = 𝑢𝑖(𝑣𝑖)
𝑇 

(20) 

 

Again, length can be defined in terms of a vector magnitude. 

 

|𝒖| = √𝒖 ∙ 𝒖 = √𝑢𝑖𝐺−1(𝑢𝑖)𝑇 

(21) 

 

Notation 

 

Here is a summary of the notation. 

 

1. 𝐸 is a matrix where the rows are basis vectors 

2. Basis vectors can also be notated as 𝒆𝒊 

3. Superscripted un-bolded variables are vector components - 𝑢𝑖 

4. 𝑊 is a reciprocal basis where 𝑊𝐸𝑇 = 𝐼 

5. Reciprocal basis vectors can be written as 𝝎𝒊 

6. Subscripted un-bolded variables are reciprocal vector components - 𝑢𝑖 

7. 𝑔𝑖𝑗 are the components of the metric 

8. 𝑔𝑖𝑗 are the components of the inverse metric 

 

For example, the vector 𝒖 can be represented in either basis as  

 

𝒖 = 𝑢𝑖𝐸 = 𝑢𝑖𝒆𝒊 = 𝑢𝑖𝑊 = 𝝎𝒊𝑢𝑖 = 𝑢𝑖𝐺𝑊 

(22) 

 

In equation (22), we use the Einstein summation convention where there is an implied sum over 

the same index that occurs in the upper and lower positions. So, equation (22) would be 

equivalent to 

 

𝒖 = ∑𝑢𝑖𝒆𝒊

𝑖

= ∑𝑢𝑖𝝎
𝒊

𝑖

 

(23) 

 

Index Raising and Lowering 

 

From equations (9) and (15), the dot product can be written as 

 

𝒖 ∙ 𝒗 = 𝑢𝑖(𝑣
𝑖)

𝑇
= 𝑢𝑖𝐺(𝑣𝑖)

𝑇
= 𝑢𝑖𝑔𝑖𝑗𝑣

𝑗 

(24) 

 

From equation (24), we see that  

 

𝑢𝑖 = 𝑢𝑖𝐺 
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so 𝐺 lowers an upper index. 

 

From equations (19) the dot product can be written as  

 

𝒖 ∙ 𝒗 = 𝑢𝑖(𝑣𝑖)
𝑇 = 𝑢𝑖𝐺

−1(𝑣𝑖)
𝑇 

(25) 

 

𝑢𝑖 = 𝑢𝑖𝐺
−1  

(26) 

 

So 𝐺−1 raises a lower index. 

 

Example 3 
 

Using 𝐸 from the previous example ⇒ 

 

𝑊 = (𝐸−1)𝑇 =

[
 
 
 
 √3

2
−

1

4

−
1

2

√3

4 ]
 
 
 
 
𝑇

=

[
 
 
 
 √3

2
−

1

2

−
1

4

√3

4 ]
 
 
 
 

 

(27) 

𝑢𝑖 = 𝑢𝑖𝐺 = [1 2] [ 4 4√3

4√3 16
] = [4 + 8√3 4√3 + 32] 

(28) 

 

Equation (22) ⇒ 

 

𝑢𝑖𝑊 = [4 + 8√3 4√3 + 32]

[
 
 
 
 √3

2
−

1

2

−
1

4

√3

4 ]
 
 
 
 

= [√
3

2
[4 + 8√3] −

1

4
[4√3 + 32] −

1

2
[4 + 8√3] +

√3

4
[4√3 + 32]] 

 

= [√3 + 4 4√3 + 1] 
(29) 

Equation (29) is the same as equation (6) as expected. 
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Vector Under a Change in Coordinates 

 

Suppose the basis changes from 𝐸 to 𝐸̅ as shown in equation (30). 

 

𝐸̅ = 𝐴𝐸 

(30) 

where  

 

𝐸 = [

𝒆𝟏

⋮
𝒆𝒏

] = [

𝑒11 ⋯ 𝑒1𝑛

⋮ ⋱ ⋮
𝑒𝑛1 ⋯ 𝑒𝑛𝑛

] 

 

 𝐸̅ = [
𝒆̅𝟏

⋮
𝒆̅𝒏

] = [
𝑒̅11 ⋯ 𝑒̅1𝑛

⋮ ⋱ ⋮
𝑒̅𝑛1 ⋯ 𝑒̅𝑛𝑛

] 

 

𝐴 = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] ≡ coordinate transformation matrix. 

 

as before, the basis vectors are the rows of 𝐸 and 𝐸̅. 

 

Equation (30) maps the basis vectors of 𝐸 to those of 𝐸̅. 

 

The vector 𝒗 is a geometric object that is independent of the basis ⇒ it’s represented in ⇒ 

 

𝒗 = 𝑣𝑖𝐸 = 𝑣̅𝑖𝐸̅ 

(31) 

 

where 𝑣𝑖 and 𝑣̅𝑖 are row vectors of components in the basis 𝐸 and 𝐸̅ respectively 

 

The idea behind equation (31) is to have 𝑣̅𝑖 and 𝐸̅ change in a way to keep the geometric object 

𝒗 the same. Equation (30) relates the 𝐸 basis to the 𝐸̅ basis. The next step is to relate 𝑣̅𝑖 and 𝑣𝑖. 

 

𝑣̅𝑖 = 𝑣𝑖𝐵 

(32) 

where  

 𝐵 is a matrix to be determined 

 

To determine 𝐵, put equations (30) and (32) into equation (31) ⇒ 

 

𝒗 = 𝑣𝑖𝐸 = 𝑣̅𝑖𝐸̅ = 𝑣𝑖𝐵𝐴𝐸 ⇒ 

(33) 

 

To make equation (33) an equality ⇒ 

 



8 
 

𝐵𝐴 = 𝐼 ⇒ 

 

𝐵 = 𝐴−1 

(34) 

 

To show how the reciprocal basis vectors transform, invert equation (30) ⇒ 

 

𝐸̅−1 = (𝐴𝐸)−1 = 𝑊̅𝑇 = 𝐸−1𝐴−1 = 𝑊𝑇𝐵 ⇒ 

 

𝑊̅ = [𝑊𝑇𝐵]𝑇 = 𝐵𝑇𝑊 

(35) 

 

To show a reciprocal vector under a change of coordinates ⇒ 

 

𝑣̅𝑖 = 𝑣𝑖𝐶 

(36) 

 

where 𝐶 is to be determined 

 

𝒗 = 𝑣𝑖𝑊 = 𝑣̅𝑖𝑊̅ = 𝑣𝑖𝐶𝐵𝑇𝑊 

(37) 

 

To make equation (37) an equality ⇒ 

 

𝐶𝐵𝑇 = 𝐼 = 𝐶[𝐴−1]𝑇 = 𝐶[𝐴𝑇]−1 ⇒ 

 

𝐶 = 𝐴𝑇 ⇒ 

 

𝑣̅𝑖 = 𝑣𝑖𝐴
𝑇 

(38) 

 

Dot Product Under a Change in Coordinates 

 

The dot product is an invariant, so it should be the same regardless of what coordinate system it 

is in. From equation (30) 

 

𝐸 = 𝐴−1𝐸̅ = 𝐵𝐸̅ 

(39) 

𝒖 ∙ 𝒗 = 𝑢𝑖𝐸(𝑣𝑖𝐸)
𝑇

= 𝑢𝑖𝐺(𝑣𝑖)
𝑇

= 𝑢𝑖(𝑣𝑖)
𝑇 = 𝑢𝑖𝐵𝐸̅(𝑣𝑖𝐵𝐸̅)

𝑇
= 𝑢̅𝑖𝐸̅(𝑣̅𝑖𝐸̅)

𝑇
= 𝑢̅𝑖𝐺̅(𝑣̅𝑖)

𝑇

= 𝑢̅𝑖(𝑣̅𝑖)
𝑇 = 𝒖̅ ∙ 𝒗̅ 

 

(40) 

Equation (40) shows that the dot product is invariant under a coordinate transformation as was 

expected. 
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Metric Under a Change in Coordinates 

 

The metric transforms as shown in equation (41) 

 

𝐺̅ = 𝐸̅𝐸̅𝑇 = (𝐴𝐸)(𝐴𝐸)𝑇 = 𝐴𝐸𝐸𝑇𝐴𝑇 = 𝐴𝐺𝐴𝑇 

(41) 

 

The inverse metric transforms as shown in equation (42). 

 

𝐺̅−1 = 𝑊̅𝑊̅𝑇 = 𝐵𝑇𝑊(𝐵𝑇𝑊)𝑇 = 𝐵𝑇𝑊𝑊𝑇𝐵 = 𝐵𝑇𝐺−1𝐵 

(42) 

 

Curvilinear Coordinates 

 

A derivative can be considered a tangent vector and the properties of derivatives can be used to 

define a coordinate transform using the derivatives as basis functions.a 

 

Coordinate definitions. 
 

𝑞1(𝑞̅1 ⋯ 𝑞̅𝑛) ⇒ 

 

⋮ 
 

𝑞𝑛(𝑞̅1 ⋯ 𝑞̅𝑛) ⇒ 

 

Coordinate definitions in vector form 

 

𝑞𝑖(𝑞̅𝑗) ⇒ 𝒒(𝒒̅) 

(43) 

 

Definitions of coordinate transform from properties of derivatives ⇒ 

 

𝜕

𝜕𝑞̅1
=

𝜕𝑞1

𝜕𝑞̅1

𝜕

𝜕𝑞1
+ ⋯+

𝜕

𝜕

𝑞𝑛

𝑞̅1

𝜕

𝜕𝑞𝑛
 

 

                       ⋮ 
 

𝜕

𝜕𝑞̅𝑛
=

𝜕𝑞1

𝜕𝑞̅𝑛

𝜕

𝜕𝑞1
+ ⋯+

𝜕𝑞𝑛

𝜕𝑞̅𝑛

𝜕

𝜕𝑞𝑛
 

(44) 
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where  

𝒆̅𝒊 =
𝜕

𝜕𝑞̅𝑖 ≡ basis vectors in 𝑞̅𝑖 coordinates 

 

𝒆𝒊 =
𝜕

𝜕𝑞𝑖 ≡ basis vectors in 𝑞𝑖 coordinates 

 

Equation (44) in matrix form ⇒ 

 
𝜕

𝜕𝒒̅
=

𝜕𝒒

𝜕𝒒̅

𝜕

𝝏𝒒
⇒ 𝐸̅ = 𝐴𝐸 

(45) 

This has the same form as equation (30)  

 

where 

 

𝐸̅ =
𝜕

𝜕𝒒̅
= [

𝒆̅𝟏

⋮

𝒆̅𝒏

] 

 

𝐸 =
𝜕

𝝏𝒒
= [

𝒆𝟏

⋮

𝒆𝒏

] 

 

𝐴 = [
𝜕𝒒

𝜕𝒒̅
] =

[
 
 
 
 
 
𝜕𝑞1

𝜕𝑞̅1 ⋯
𝜕𝑞𝑛

𝜕𝑞̅1

⋮ ⋱ ⋮
𝜕𝑞1

𝜕𝑞̅𝑛 ⋯
𝜕𝑞𝑛

𝜕𝑞̅𝑛]
 
 
 
 
 

 

(46) 

 

Equation (46) is the definition of a matrix derivative1. Note – this definition, is given in 

numerator layout notation. 

 

Inverse coordinate definitions in coordinate form⇒ 

 

𝑞̅1(𝑞1 ⋯ 𝑞𝑛) 

 

                ⋮ 
 

𝑞̅𝑛(𝑞1 ⋯ 𝑞𝑛) ⇒ 

 

Inverse coordinate definitions in matrix form⇒ 

 
1 Matrix Calculus 

http://www.doc.ic.ac.uk/~ahanda/referencepdfs/MatrixCalculus.pdf
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𝑞̅𝑗(𝑞𝑖) ⇒ 𝒒̅(𝒒) 

(47) 

 

𝑑𝑞̅1 =
𝜕𝑞̅1

𝜕𝑞1
𝑑𝑞1 + ⋯+

𝜕𝑞̅1

𝜕𝑞𝑛
𝑑𝑞𝑛 

 

 ⋮ 
 

𝑑𝑞̅𝑛 =
𝜕𝑞̅𝑛

𝜕𝑞1
𝑑𝑞1 + ⋯+

𝜕𝑞̅𝑛

𝜕𝑞𝑛
𝑑𝑞𝑛 

(48) 

 

Notice that equation (48) defines the transpose of a matrix derivative – see equation (46) and 

swap the 𝑞̅𝑖 and 𝑞𝑖 terms to see that the 𝑖 and 𝑗 indices need to be swapped. Putting equation (48) 

in matrix form ⇒ 

 

𝒅𝒒̅ = [
𝜕𝒒̅

𝜕𝒒
]
𝑇

𝒅𝒒 ⇒ 𝑊̅ = 𝐵𝑇𝑊 

(49) 

Equation (49) has the same matrix form as equation (35). 

where 

𝑊̅ = 𝒅𝒒̅ 

 

 

𝐵 =
𝜕𝒒̅

𝜕𝒒
 

 

𝑊 = 𝒅𝒒 

 

Now 

𝑊 = 𝒅𝒒 = [
𝒅𝒒𝟏

⋮
𝒅𝒒𝒏

] 

 

𝐸 =
𝜕

𝜕𝒒
=

[
 
 
 
 

𝜕

𝜕𝒒𝟏

⋮
𝜕

𝜕𝒒𝒏]
 
 
 
 

 

 

𝑊̅ = 𝒅𝒒̅ = [
𝒅𝒒̅𝟏

⋮
𝒅𝒒̅𝒏

] 
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𝐸̅ =
𝜕

𝜕𝒒̅
=

[
 
 
 
 

𝜕

𝜕𝒒̅𝟏

⋮
𝜕

𝜕𝒒̅𝒏]
 
 
 
 

  ⇒ 

 

𝑊𝑇𝐸 = [𝒅𝒒𝟏 ⋯ 𝒅𝒒𝒏]

[
 
 
 
 

𝜕

𝜕𝒒𝟏

⋮
𝜕

𝜕𝒒𝒏]
 
 
 
 

=
𝜕𝒒𝟏

𝜕𝒒𝟏
+ ⋯+

𝜕𝒒𝒏

𝜕𝒒𝒏
= 𝐼 =

𝜕𝒒̅𝟏

𝜕𝒒̅𝟏
+ ⋯+

𝜕𝒒̅𝒏

𝜕𝒒̅𝒏
= [𝒅𝒒̅𝟏 ⋯ 𝒅𝒒̅𝒏]

[
 
 
 
 

𝜕

𝜕𝒒̅𝟏

⋮
𝜕

𝜕𝒒̅𝒏]
 
 
 
 

 

 

= 𝑊̅̅̅
𝑇
𝐸̅ = 𝐼 

 

(50) 

𝐵𝐴 =
𝜕𝒒̅

𝜕𝒒

𝜕𝒒

𝜕𝒒̅
=

𝜕𝒒̅

𝜕𝒒̅

𝜕𝒒

𝜕𝒒
= 𝐼 

(51) 

 

Example 4 

 

Let’s transform from cartesian coordinates to the coordinate system of Example 1 – equation (5) 

⇒ 

 

𝐸 = [
1 0
0 1

] = 𝐼 

 

𝑊 = [
1 0
0 1

] = 𝐼 

 

𝐺 = 𝐸𝐸𝑇 = 𝐼𝐼𝑇 = 𝐼 

 

 

𝐸̅ = [√3 1

2 2√3
] 𝐸 = [√3 1

2 2√3
] 𝐼 

(52) 

 

Equation (52) ⇒ 

 

𝐴 = [√3 1

2 2√3
] 

(53) 

 

𝐺̅ = 𝐴𝐺𝐴𝑇 = [√3 1

2 2√3
] [

1 0
0 1

] [√3 1

2 2√3
]
𝑇

= [√3 1

2 2√3
] [√3 2

1 2√3
] = [ 4 4√3

4√3 16
] 

(54) 
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As expected, we get the same result as equation (11). 

 

From Example 3 ⇒ 

 

𝑊̅ = (𝐸̅−1)𝑇 =

[
 
 
 
 √3

2
−

1

2

−
1

4

√3

4 ]
 
 
 
 

 

(55) 

Since 𝑊 = 𝐼 ⇒ 

 

𝑊̅ = 𝐵𝑇𝑊 ⇒ 

 

𝐵𝑇 =

[
 
 
 
 √3

2
−

1

2

−
1

4

√3

4 ]
 
 
 
 

 

(56) 

 

𝐺−1 = 𝑊𝑊𝑇 = 𝐼𝐼𝑇 = 𝐼 

 

𝐺̅−1 = 𝐵𝑇𝐺−1𝐵 ⇒ 

 

𝐺̅−1 =

[
 
 
 
 √3

2
−

1

2

−
1

4

√3

4 ]
 
 
 
 

𝐼

[
 
 
 
 √3

2
−

1

4

−
1

2

√3

4 ]
 
 
 
 

=

[
 
 
 
 √3

2
−

1

2

−
1

4

√3

4 ]
 
 
 
 

[
 
 
 
 √3

2
−

1

4

−
1

2

√3

4 ]
 
 
 
 

=

[
 
 
 
 1 −

√3

4

−
√3

4

1

4 ]
 
 
 
 

 

(57) 

To check ⇒ 

𝐺 = [𝐺̅−1]−1 =

[
 
 
 
 1 −

√3

4

−
√3

4

1

4 ]
 
 
 
 
−1

= [ 4 4√3

4√3 16
] 

(58) 

As expected, this is the same as equation (54). 
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Summary Equations 

 

Figure 1 shows the relationships between the various basis vectors and vectors. Notice that the 

basis vectors are transposed to keep the transforms consistent as shown below. The default 

vector is a row vector, and the basis vectors are rows of the basis matrices as previously 

discussed. All vectors and basis vectors operate on the left side of the transform.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

 

We will go through the paths between nodes of Figure 1. 

 

 

Equations between nodes 1 and 4 

 

𝑣̅𝑖 = 𝑣̅𝑖𝐺̅ = 𝑣𝑖𝐵𝐺̅ = 𝑣𝑖𝐵𝐴𝐺𝐴𝑇 = 𝑣𝑖𝐺𝐴𝑇 = 𝑣𝑖𝐴
𝑇 

(59) 

𝐸̅ = 𝐴𝐸 ⇒ 

 

𝑮−𝟏 = 𝑾𝑾𝑻 

𝑮 = 𝑬𝑬𝑻 

 

𝑩 

𝑨 

𝑨𝑻 

𝑩𝑻 

𝐸𝑇,𝑣𝑖 
𝐸̅𝑇, 𝑣̅𝑖 

𝑊̅𝑇, 𝑣̅𝑖 

 

𝑊𝑇, 𝑣𝑖 

 

𝑮̅−𝟏 = 𝑩𝑻𝑮−𝟏𝑩 

 

𝑮̅ = 𝑨𝑮𝑨𝑻 

1 

2 
3 

4 

𝐴𝐵 = 𝐼 

𝑊𝐸𝑇 = 𝑊̅𝐸̅𝑇

= 𝐼 
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𝐸̅𝑇 = 𝐸𝑇𝐴𝑇 

(60) 

Equations (59) and (60) give a consistent transform of 𝐴𝑇 between nodes 1 and 4. 

 

Equations between nodes 4 and 1 

 

𝑣𝑖 = 𝑣̅𝑖[𝐴
𝑇]−1 = 𝑣̅𝑖𝐵

𝑇 

(61) 

 

𝐸̅ = 𝐴𝐸 ⇒ 

 

𝐸 = 𝐴−1𝐸̅ = 𝐵𝐸̅ 

 

because 𝐵 = 𝐴−1 

 

Transposing 𝐸 ⇒ 

 

𝐸𝑇 = 𝐸̅𝑇𝐵𝑇 

(62) 

Equations (61) and (62) give a consistent transform of 𝐵𝑇 between nodes 4 and 1. 

 

Equations between nodes 1 and 2 

 

𝑣𝑖 = 𝑣𝑖𝐺
−1 

(63) 

𝐸𝑇𝐺−1 = 𝐸𝑇𝑊𝑊𝑇 = 𝑊𝑇 ⇒ 

(64) 

Equations (63) and (64) give a consistent transform of 𝐺−1 between nodes 1 and 2. 

 

Equations between nodes 2 and 1 

 

𝑣𝑖 = 𝑣𝑖𝐺 

(65) 

𝐸 = [𝑊𝑇]−1 = [𝐸𝑇𝐺−1]−1 = 𝐺[𝐸𝑇]−1 = 𝐺𝑊 ⇒ 

 

𝐸𝑇 = [𝐺𝑊]𝑇 = 𝑊𝑇𝐺𝑇 = 𝑊𝑇𝐺 

(66) 

Because the metric is symmetric ⇒ 𝐺 = 𝐺𝑇 

 

Equations (65) and (66) give a consistent transform of 𝐺 between nodes 2 and 1. 

 

Equations between nodes 4 and 3 

 

𝑣̅𝑖 = 𝑣̅𝑖𝐺̅
−1 = 𝑣̅𝑖𝐵

𝑇𝐺−1𝐵 

(67) 
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𝑊̅𝑇 = 𝐸̅𝑇𝐺̅−1 = 𝐸̅𝑇𝐵𝑇𝐺−1𝐵 

(68) 

Equations (67) and (68) give a consistent transform of 𝐺̅−1 between nodes 4 and 3. 

 

 

Equations between nodes 3 and 4 

 

𝑣̅𝑖 = 𝑣̅𝑖𝐺̅ = 𝑣̅𝑖𝐴𝐺𝐴𝑇 

(69) 

 

𝑊̅𝑇 = 𝐸̅𝑇𝐺̅−1 ⇒ 

 

𝐸̅𝑇 = 𝑊̅𝑇𝐺̅ = 𝑊̅𝑇𝐴𝐺𝐴𝑇 

(70) 

 

Equations (69) and (70) give a consistent transform of 𝐺̅ between nodes 3 and 4. 

 

 

Equations between nodes 2 and 3 

 

𝑣̅𝑖 = 𝑣𝑖𝐵 

(71) 

𝑊̅ = 𝐵𝑇𝑊 

 

𝑊̅𝑇 = [𝐵𝑇𝑊]𝑇 = 𝑊𝑇𝐵 

(72) 

 

Equations (71) and (72) give a consistent transform of 𝐵 between nodes 2 and 3. 

 

Equations between nodes 3 and 2 

 

𝑣𝑖 = 𝑣̅𝑖𝐵−1 = 𝑣̅𝑖𝐴 

(73) 

𝑊𝑇 = 𝑊̅𝑇𝐵−1 = 𝑊̅𝑇𝐴 

(74) 

 

Equations (73) and (74) give a consistent transform of 𝐴 between nodes 3 and 2. 

 


