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Introduction

This write-up develops the covariant derivative in matrix form which builds from the Christoffel
Symbols in Matrix Form writeup.

Covariant Derivative in Matrix Form

The matrix equation for a vector is given by equation (1).

, vie;, + -+ vy,
v ="v'e; =vi[e1r = ewm]+ -+ ven1  enn] = :
vie, + -+ v"ey,
= [Ul v“]E:‘UiE
1)
where
vt is a row vector of components - v
E is matrix of matrix of basis vectors where each row is a basis vector
Taking the derivative of (1) with respect to coordinate g?. =
ov _o(v'E) ov' g1 pi OF
aqP B aqP B aqP v aqP
(3)
But
0E
Fra r,E
4)
See!
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Plugging equation (4) into equation (3) =

v v ;
a—qp—aqu‘l'v FpE=>
ov _[ov' |
a—qp = 9qP +vrT, E
(5)
Factoring out the basis vectors - E - as was done in Curvilinear Calculus? =
i .
— L
Vv = aqP +v'T,
(6)
Equation (6) is the covariant derivative in matrix form.
where
vt is a row vector of components
rlpl rlp”
L= =0
rnpl rnp”
V,v is a row vector
Matrix Parameterized Covariant Derivative
The parameterized covariant derivative is given by equation (7).
The coordinates are parameterized as shown below.
q? (1) =
ov 0v dqP 0qP 0qt 0q? oq"
— = = =—V — v i ——V
91 0qr 04 _ oA VT g W gy Vvt g Ve
(7)
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where
V,v is given by equation (6) and is a row vector

q® is a row vector of coordinates

Equation (8) shows the matrix form of the parameterized covariant derivative shown in equation
(7).

6q

ER}

Vv is a row vector of covariant derivatives

v

o W

(8)

where
Z—‘: is a row vector of the derivative of coordinates with respect to the parameter A
Equation (8) is a dot product.

Matrix Covariant Derivative for the 2-D Sphere

The block matrix for the Christoffel Symbols of the Second Kind for the 2-D sphere is shown in
equation (9).

I 1 iy 1 i0 | Fga

0 0 cos(6)
= HO cos(e)] [ 0 —smcm”
sin(8) —cos(6)sin(0) 0

©)
Equations (10) and (11) show the covariance derivatives for a vector on the surface of a 2-D
sphere.
0 0
vk _ovk
ng = + FQU —+ Uk COS(G)
96 ~ 06 0 ———=
sin(0)
(10)
vk ov¥ 0 cos(0)
V,v = P T,v* = P vk sin(6)
14 14 —cos(0)sin(0) 0
(11)



Check Parameterized Matrix Covariant Derivative for the 2-D Sphere

We can check the parameterized matrix covariant derivatives by using the resulting vectors from
the Parallel Transport write up® and showing that the covariant derivative of these vectors is zero.
Note that the parallel transport write-up has not been updated to the default vector being a row
vector. The results are still valid.

Constant Longitude Case

Equation (12) shows the equation for a parallel transported vector along a constant longitude on
the 2-D sphere.

v¥sin (0,)
6) =y 2%
v(6) lvo sin (0)
(12)
where
@ = @, =constant
6 changes along a constant longitude path= 1 =6
dg?] a101 11
oA _%[q)] - [o] =z
ov 1
a = [ng V(pv] [0] = Vev
(13)
Kk 0 0
o1, ) o)
sin(8)
(14)
Plugging equation (12) into equation (14) =
B vépsin'(eo)cos(e)l 4 lo cot(6) vép.sin (Ho)l _ [0 B v(‘)psin.(eo)cos(e)
sin? (0) sin (0) sin? (0)
v(‘)psin'(Ho)cos(H) —[0 0]
sin 2(0)
(15)

These results are what were expected.

3 parallel Transport
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Constant Latitude Case
Equation (16) shows the equations for a parallel transported vector along a constant latitude.

6, = constant
@ changes along a constant latitude path = 1 = ¢

19 (0,, @) = 1% (0, 0)cos(ke) + sin(6y)v? (0, 0)sin(kep)

9(60,0)
v® (8, 9) = 1° (8, 0)cos(ke) — vsinfoeo)sm(k(p)
(16)
where k = cos(6,)
[v¥] = [v° (60, 0) v? (6o, )]
olg?] _ 0 [9] 3 [0
01 odplel L1
ov 0
31 = [Vov V(pv] [1] = V(pv =
K k cos(6,)
Vv = aai +vk[r,] = aai + v¥ 0 sin(8,)
e v —cos(6y)sin(6,) 0
vk 0
= % + [—cos(@o)sin(Qo)v‘P Z(i):gezi ve]
(17)

The components of equation (17) get long in this case, so we break the calculations up into their
6 and ¢ components.



Theta Component

9
ov (gfpo' #) = —v9(6,, 0)sin(kp)cos(8,) + sin(B,)v? (6, 0)cos(kp)cos(6,)
(18)
{v"l" } = —co0s(0,)sin(0,)v? = —cos(0,)sin(0,) | v*(0,,0)cos(ky) — v°(8,0) in(ke)
03, = —cos(Bo)sin(6, = —cos(6,)sin(0, Y @ sin (69) sin(ke
. . 09(90,0) .
= —co0s(0,)sin(0,)v? (0, 0)cos(kp) + cos(,)sin(8,) ——————sin(kep)
sin(8,)
(19)
Adding equations (18) and (19) =
0
ov gz;)' #) + {ka(p}g = —v9(8,, 0)sin(kp)cos(8,) + sin(8,)v? (8, 0)cos(kg)cos(6,)
—c05(8,)sin(0y)v? (8,,0)cos(kp) + cos(0,)v°(8,,0)sin(kp) = 0
(20)
which is what is expected.
Phi Component
0
%‘Z}O'@ = —v?%(0,, 0)sin(kp)cos(6,) — %{;S)cos(hp)cos(ﬁo)
(21)
cos(8 0o ) :
{[vk][f}p]}(p = singeg v = ;?ZEHO? [v9 (64, 0)cos(ke) + sin(6,y)v? (60,0)51n(k<p)]
cos(6y) .
= Sin6y) v9(0,, 0)cos(kg) + v (6,,0)sin(kep)cos(6,)
(22)

Adding equations (21) and (22) =

av¢) (60' (P)
a(p { krfp}(p
6(8,,0
= —v%(6,, 0)sin(kp)cos(6,) — %Qo))cos(k(p)cos(go)
Z?Zgg v9(0,,0)cos(ke) + v?(8,, 0)sin(kgp)cos(8,) = 0



(23)
which is what is expected
Putting the 6 and ¢ elements together =

Voo=[0 0]
(24)



