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Introduction 

 

This write-up discusses geometric invariants with regards to tensors. Figure 1 shows the 

relationships between the various basis vectors and vector components.1 Notice that the basis 

vectors are transposed to keep the transforms consistent as shown below. The default vector is a 

row vector, and the basis vectors are rows of the basis matrices. A vector or matrix is applied on 

the left of an operator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 1 

 

 
 

1 Coordinates Summary 

𝑮−𝟏 = 𝑾𝑾𝑻 

𝑮 = 𝑬𝑬𝑻 

 

𝑩 

𝑨 

𝑨𝑻 

𝑩𝑻 

𝐸𝑇,𝑣𝑖 
𝐸ത𝑇, 𝑣ҧ𝑖 

𝑊ഥ 𝑇, 𝑣ҧ 𝑖 

 

𝑊𝑇, 𝑣𝑖 

 

𝑮ഥ−𝟏 = 𝑩𝑻𝑮−𝟏𝑩 

 

𝑮ഥ = 𝑨𝑮𝑨𝑻 

1 

2 
3 

4 

𝐴𝐵 = 𝐼 

𝑊𝐸𝑇 = 𝐼 

http://www.signalscience.net/
http://www.signalscience.net/
http://www.metricmath.com/
mailto:al@metricmath.com
https://www.metricmath.com/_files/ugd/55ccdb_90cb4675cf0048c5b96ef66368bf2e83.pdf
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Equation (1) shows the definitions of a vector in terms of its basis vectors. 

 

𝒗 = 𝑣𝑖𝒆𝒊 = 𝑣1[𝑒11 ⋯ 𝑒1𝑛] + ⋯+ 𝑣𝑛[𝑒𝑛1 ⋯ 𝑒𝑛𝑛] = [
𝑣1𝑒11 + ⋯+ 𝑣𝑛𝑒𝑛1

⋮
𝑣1𝑒1𝑛 + ⋯+ 𝑣𝑛𝑒𝑛𝑛

]

= [𝑣1 ⋯ 𝑣𝑛]𝐸 = 𝑣𝑖𝐸 

(1) 

where 

 

 𝑣𝑖 is a row vector of components 

 𝐸 is a matrix of basis vectors where each row is a basis vector 

𝒆𝒊 = [𝑒𝑖1 ⋯ 𝑒𝑖𝑛] is the 𝑖𝑡ℎ basis vector 

 

Similarly, equation (2) gives the matrix equation for a vector in terms of a set of reciprocal basis 

vectors. 

 

𝒗 = 𝑣𝑖𝝎
𝒊 = 𝑣𝑖𝑊 

(2) 

 

In Figure1, a vector or matrix operates on the left of a matrix transform as illustrated in the 

examples below. 

 

Equations between nodes 1 and 4 

 

𝑣ҧ𝑖 = 𝑣ҧ 𝑖𝐺ҧ = 𝑣𝑖𝐵𝐺ҧ = 𝑣𝑖𝐵𝐴𝐺𝐴𝑇 = 𝑣𝑖𝐺𝐴𝑇 = 𝑣𝑖𝐴
𝑇 

(3) 

𝐸ത = 𝐴𝐸 ⇒ 

 

𝐸ത𝑇 = 𝐸𝑇𝐴𝑇 

(4) 

 

Equations between nodes 4 and 1 

 

𝑣𝑖 = 𝑣ҧ𝑖[𝐴
𝑇]−1 = 𝑣ҧ𝑖𝐵

𝑇 

(5) 

 

𝐸ത = 𝐴𝐸 ⇒ 

 

𝐸 = 𝐴−1𝐸ത = 𝐵𝐸ത 

 

because 𝐵 = 𝐴−1 

 

Transposing 𝐸 ⇒ 
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𝐸𝑇 = 𝐸ത𝑇𝐵𝑇 

(6) 

 

In general, a basis set does not have to be orthogonal or normalized. It does have to span the 

vector space meaning that any vector in the space can be written in terms of the basis set. When 

computing geometric invariants, properties of the basis set need to be taken into consideration.  

 

Geometric Invariants 
 

 

Inner Product 

 

The matrices 𝐴 and 𝐵 were originally set up so that the inner product is invariant under a 

coordinate transform. Consider the following definitions of two vectors. 

 

𝒖 = 𝑢𝑖𝑊 covariant vector components 

 

𝒗 = 𝑣𝑖𝐸 contravariant vector components 

 

It is necessary for one vector to have covariant components and one to have contravariant 

components.2 

 

From Figure 1 

 

𝑢ത𝑖 = 𝑢𝑖𝐴
𝑇 

 

𝑣ҧ 𝑖 = 𝑣𝑖𝐵 

 

Putting the above equations together and taking the inner product ⇒ 

 

𝒖ഥ ∙ 𝒗ഥ = 𝑢𝑖𝐴
𝑇𝑊ഥ [𝑣𝑖𝐵𝐸ത]

𝑇
= 𝑢𝑖𝐴

𝑇𝑊ഥ 𝐸ത𝑇[𝑣𝑖𝐵]
𝑇

= 𝑢𝑖𝐴
𝑇(𝐸ത−1)𝑇𝐸ത𝑇[𝑣𝑖𝐵]

𝑇
= 𝑢𝑖𝐴

𝑇[𝑣𝑖𝐵]
𝑇
 

 

because 𝑊ഥ = (𝐸ത−1)𝑇 – see 2 

  

 
2Coordinates Summary 
 

https://www.metricmath.com/_files/ugd/55ccdb_90cb4675cf0048c5b96ef66368bf2e83.pdf
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Further simplifying ⇒ 

 

𝒖ഥ ∙ 𝒗ഥ = 𝑢𝑖𝐴
𝑇[𝑣𝑖𝐵]

𝑇
= 𝑢𝑖𝐴

𝑇𝐵𝑇𝑢𝑖(𝑣
𝑖)

𝑇
= 𝑢𝑖(𝑣

𝑖)
𝑇

= 𝒖 ∙ 𝒗 

 

because 𝐵 = 𝐴−1 see 2 

 (7) 

Equation (7) shows that the inner product is invariant under a coordinate transform as was 

expected. An application of an inner product is to compute the magnitude squared of a vector. 

 

|𝒗|2 = 𝑣𝑖(𝑣𝑖)
𝑇

= 𝑣𝑖𝐺[𝑣𝑖]
𝑇
 

(8) 

 

where 

 𝐺 = 𝐸𝐸𝑇 is the metric 

 𝑣𝑖 ≡ contravariant vector components 

 

 

Area 

 

 

 

 

 

 

 

 

 

 

      Figure 2 

 

Figure 2 shows a parallelogram defined by 2 vectors in cartesian coordinates. 

 

𝑎𝑟𝑒𝑎 = 𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡 = |𝒖||𝒗|𝑠𝑖𝑛(𝛼 − 𝛽) = |𝒖||𝒗|[𝑠𝑖𝑛(𝛼)𝑐𝑜𝑠(𝛽) − 𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝛼)] 
(9) 

|𝒖|𝑠𝑖𝑛(𝛼) = 𝑢𝑦 

|𝒗|𝑐𝑜𝑠(𝛽) = 𝑣𝑥 
|𝒗|𝑠𝑖𝑛(𝛽) = 𝑣𝑦 

|𝒖|𝑐𝑜𝑠(𝛼) = 𝑢𝑥 

(10) 

  

𝒗 

𝒖 

𝛼 
𝛽 

ℎ 

𝑥 

𝑦 
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Equations (9) and (10) ⇒ 

 

𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 = 𝑢𝑦𝑣𝑥 − 𝑣𝑦𝑢𝑥 = 𝑢𝑥𝑣𝑦 − 𝑣𝑥𝑢𝑦 

(11) 

Equation (11) can be looked at as a determinant. Define 

 

𝑀 = 𝑉𝐸 = [
𝑢𝑥 𝑢𝑦

𝑣𝑥 𝑣𝑦
] 𝐸 = [

𝑢𝑥 𝑢𝑦

𝑣𝑥 𝑣𝑦
] [

1 0
0 1

] ⇒ 

 

𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 = 𝑑𝑒𝑡(𝑀) = 𝑑𝑒𝑡(𝑉𝐸) = 𝑑𝑒𝑡(𝑉)𝑑𝑒𝑡(𝐸) = 𝑢𝑥𝑣𝑦 − 𝑣𝑥𝑢𝑦 

(12) 

 

Equation (12) uses the properties of determinants3 and gives a signed area in Cartesian 

coordinates. For general coordinates, transform from a Cartesian to a general coordinate system 

as shown in equation (13). 

 

𝒗ഥ = 𝑣ҧ 𝑖𝐸ത 

 

𝒖ഥ = 𝑢ത𝑖𝐸ത 

(13) 

 

Create a matrix with vectors 𝒖ഥ and 𝒗ഥ ⇒ 

 

𝑀ഥ = 𝑉ത𝐸ത = [
𝑢ത𝑥 𝑢ത𝑥

𝑣ҧ𝑥 𝑣ҧ𝑦
] 𝐸ത = 𝑉𝐵𝐴𝐸 = 𝑉𝐸 

(14) 

 

Equation (14) shows that the area is invariant under a transform as expected. 

 

To see how the determinant transforms, take the determinant of equation (14) ⇒ 

 

𝑑𝑒𝑡(𝑀ഥ) = 𝑑𝑒𝑡(𝑉ത𝐸ത) = 𝑑𝑒𝑡(𝑉ത)𝑑𝑒𝑡(𝐸ത) = 𝑑𝑒𝑡(𝑉)𝑑𝑒𝑡(𝐸) 

(15) 

 

Area Example 

 

For polar coordinates 

 

𝑥 = 𝑟 𝑐𝑜𝑠(𝜃) 

𝑦 = 𝑟 𝑠𝑖𝑛(𝜃) 

 

𝐴(𝑟, 𝜃) = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑟 𝑠𝑖𝑛(𝜃) 𝑟 𝑐𝑜𝑠(𝜃)
] 

 
3 Determinants 

https://en.wikipedia.org/wiki/Determinant#First_properties
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(16) 

Now make 𝐴(𝑟, 𝜃) an unnormalized transform⇒ use 

 

𝐴 (10,
𝜋

4
) = [

1

√2

1

√2

−5√2 5√2

] 

 

𝐵 (10,
𝜋

4
) = 𝐴−1 (10,

𝜋

4
) =

[
 
 
 
 

1

√2

1

√2

−
1

5 ∙ 2
3

2⁄

1

5 ∙ 2
3

2⁄ ]
 
 
 
 

 

 

Define two vectors 𝒖 and 𝒗 in Cartesian coordinates ⇒ 

 

𝒖 = [3 4] 
𝒗 = [1 2] 
 

𝑉 = [
3 4
1 2

] 

 

𝑎𝑟𝑒𝑎 = 𝑑𝑒𝑡(𝑉) = 6 − 4 = 2 

(17) 

 

Transform to the unnormalized polar coordinates using 𝐵 (10,
𝜋

4
) ⇒ 

 

𝑉ത = [
𝒖ഥ
𝒗ഥ
] = 𝑉𝐵 = [

3 1
4 2

]

[
 
 
 
 

1

√2

1

√2

−
1

5 ∙ 2
3

2⁄

1

5 ∙ 2
3

2⁄ ]
 
 
 
 

=

[
 
 
 23/2 −

1

5√2

3√2 −
1

5√2]
 
 
 

 

 

𝐸ത = [
𝒆ത𝟏

𝒆ത𝟐
] = 𝐴𝐸 =

[
 
 
 
 

1

√2

1

√2

−
1

5 ∙ 2
3

2⁄

1

5 ∙ 2
3

2⁄ ]
 
 
 
 

 

 

𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 = 𝑑𝑒𝑡(𝑉ത)𝑑𝑒𝑡(𝐸ത) =
1

5
× 10 = 2 

 

which is the same as equation (17) as expected 
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Area Calculations Using the Wedge Product 

 

Given vectors 

 

𝒂 = 𝑎𝑖𝒆𝒊 = 𝑎1𝒆𝟏 + 𝑎2𝒆𝟐 

 

𝒃 = 𝑏𝑖𝒆𝒊 = 𝑏1𝒆𝟏 + 𝑏2𝒆𝟐 

 

The wedge product for vectors is given by equation (18). 

 

𝒂 ∧ 𝒃 = (𝑎1𝒆𝟏 + 𝑎2𝒆𝟐) ∧ (𝑏1𝒆𝟏 + 𝑏2𝒆𝟐) = 

 

𝑎1𝒆𝟏 ∧ 𝑏1𝒆𝟏 + 𝑎1𝒆𝟏 ∧ 𝑏2𝒆𝟐 + 𝑎2𝒆𝟐 ∧ 𝑏1𝒆𝟏 + 𝑎2𝒆𝟐 ∧ 𝑏2𝒆𝟐 

(18) 

 where  

  ∧ is the wedge product operator 

  Note: the wedge product is distributive 

 

To simplify equation (18), 

 use the following properties of the wedge product operator. 

 

𝒖 ∧ 𝒖 = 𝟎 

(19) 

𝒖 ∧ 𝒗 = −𝒗 ∧ 𝒖 

(20) 

 

Note determinants have the same properties as equations (19) and (20). Two identical rows or 

columns in a matrix will give a determinant of 0. Interchanging two rows or columns, reverses 

the determinant’s sign.  

 

Using equations (19) and (20) equation (18) ⇒ 

 

𝒂 ∧ 𝒃 = 𝑎1𝒆𝟏 ∧ 𝑏2𝒆𝟐 − 𝑏1𝒆𝟏 ∧ 𝑎2𝒆𝟐 = (𝑎1𝑏2 − 𝑏1𝑎2)𝒆𝟏 ∧ 𝒆𝟐 = 𝑑𝑒𝑡 ([𝑎
1 𝑎2

𝑏1 𝑏2]) 𝒆𝟏 ∧ 𝒆𝟐 

(21) 

𝒆𝟏 ∧ 𝒆𝟐 are called bivectors ( 2-vectors ) and are a basis of coordinate plane segments spanned 

by 𝒆𝟏 and 𝒆𝟐- e.g. {𝑥̂𝑦̂, 𝑥̂𝑧̂, 𝑦̂𝑧̂}4. A bivectors’ magnitude is the area of the parallelogram defined 

by 𝒆𝟏 and 𝒆𝟐.as shown in Figures 2a and 2b. The sign is determined by putting the tail of the 

second vector at the tip of the first vector. If the arrows are counterclockwise, the sign is positive, 

otherwise it’s negative. Figure 2a shows a positive direction and Figure 2b shows a negative 

direction.  

  

 
4 Linear Algebra via Exterior Products - Sergei Winitzki, page 73 

https://www.academia.edu/32968283/Linear_Algebra_via_Exterior_Products
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       Figure 2a         Figure 2b 

 

 

 

 

The area calculation is given by equation (22). 

 

𝒖ഥ ∧ 𝒗ഥ = (𝑢ത1𝒆ത𝟏 + 𝑢ത2𝒆ത𝟐) ∧ (𝑣ҧ1𝒆ത𝟏 + 𝑣ҧ2𝒆ത𝟐) 

          = 𝑢ത1𝑣ҧ1(𝒆ത𝟏 ∧ 𝒆ത𝟏) + 𝑢ത1𝑣ҧ2(𝒆ത𝟏 ∧ 𝒆ത𝟐) + 𝑢ത2𝑣ҧ1(𝒆ത𝟐 ∧ 𝒆ത𝟏) + 𝑢ത2𝑣ҧ2(𝒆ത𝟐 ∧ 𝒆ത𝟐) 

= 𝑢ത1𝑣ҧ2(𝒆ത𝟏 ∧ 𝒆ത𝟐) + 𝑢ത2𝑣ҧ1(𝒆ത𝟐 ∧ 𝒆ത𝟏) = (𝑢ത1𝑣ҧ2 − 𝑢ത2𝑣ҧ1)𝒆ത𝟏 ∧ 𝒆ത𝟐 

(22) 

 

Equation (22) is simply the determinant of 𝑉ത  multiplied by 𝒆ത𝟏 ∧ 𝒆ത𝟐. The bivector is the determinant 

of 𝐸ത multiplied by 𝒆𝟏 ∧ 𝒆𝟐 

 

𝒆ത𝟏 ∧ 𝒆ത𝟐 = 𝑑𝑒𝑡 ([
𝒆ത𝟏

𝒆ത𝟐
]) 𝒆𝟏 ∧ 𝒆𝟐 

 

(23) 

 

𝒖ഥ ∧ 𝒗ഥ = 𝑑𝑒𝑡 ([𝑢
𝑖

𝑣𝑖
]) 𝑑𝑒𝑡 ([

𝒆ത𝟏

𝒆ത𝟐
]) 𝒆𝟏 ∧ 𝒆𝟐 

(24) 

 

The determinant automatically takes care of the sign. Note that 𝒆𝟏 ∧ 𝒆𝟐 is considered a basis. 

Bivectors form a basis of coordinate plane segments using basis vectors, so equation (24) is the 

result.5 

  

 
5 Linear Algebra via Exterior Products - Sergei Winitzki, page 77 

𝑦 

𝑥 

𝒆𝟏 

𝒆𝟐 

𝒆𝟏 ∧ 𝒆𝟐 

𝑦 

𝒆𝟐 

𝒆𝟐 ∧ 𝒆𝟏 

𝒆𝟏 

𝑥 

+ − 

https://www.academia.edu/32968283/Linear_Algebra_via_Exterior_Products
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Volume  

 

The signed volume in three dimensions can be computed using three vectors that span the space 

as shown in equation (25). 

 

Define three vectors 𝒖, 𝒗, 𝒘 in basis set 𝐸 ⇒ 

        

        𝑠𝑖𝑔𝑛𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝒖 ∧ 𝒗 ∧ 𝒘 = 𝑑𝑒𝑡(𝑉)𝑑𝑒𝑡(𝐸)𝒆𝟏 ∧ 𝒆𝟐 ∧ 𝒆𝟑 

(25) 

where 

𝑉 = [
𝒖 
𝒗
𝒘

] and  𝐸 = [

𝒆𝟏

𝒆𝟐

𝒆𝟑

] 

 

 

The basis set is now a tri-vector (3-vector) and are parallelepipeds. 

 

Equation (25) can be extended to n dimensions.6 The cross product is only valid in 3 and 7 

dimensions.7 The basis set of n-vectors is contained within  ℝ𝑛.  

 

𝑠𝑖𝑔𝑛𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 ℝ𝑛 = 𝒗𝟏 ∧ 𝒗𝟐 ∧ ⋯∧ 𝒗𝒏 = 𝑑𝑒𝑡(𝑉)𝑑𝑒𝑡(𝐸)𝒆𝟏 ∧ 𝒆𝟐 ∧ ⋯𝒆𝒏 

 

 

𝑉 = [

𝒗𝟏

𝒗𝟐

⋮
𝒗𝒏

]   and  𝐸 = [

𝒆𝟏

𝒆𝟐

⋮
𝒆𝒏

]  

 

                 𝒆𝟏 ∧ 𝒆𝟐 ∧ ⋯𝒆𝒏 is an n-dimensional parallelepipeds basis 

 

Note that in ℝ𝑛, an arbitrary object can be made from basis elements of ℝ𝑛 and 

subsets of ℝ𝑛. 

 

Further Considerations of Wedge Products 
 

An arbitrary wedge product can be written as shown in equation (26) and is called a 𝑘-vector  

 

𝜶 = 𝒗𝟏 ∧ 𝒗𝟐 ∧ ⋯∧ 𝒗𝒌 

(26) 

The alternate property of equation (20) can be generalized as shown in equation (27). 

 

Given a 𝑘-vector and a 𝑝-vector 

 
6 Exterior Algebra 
7 Cross product 

https://en.wikipedia.org/wiki/Exterior_algebra
https://en.wikipedia.org/wiki/Cross_product
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𝜶 = 𝒗𝟏 ∧ 𝒗𝟐 ∧ ⋯∧ 𝒗𝒌 

 

𝜷 = 𝒗𝟏 ∧ 𝒗𝟐 ∧ ⋯∧ 𝒗𝒑 

 

𝜶 ∧ 𝜷 = (−1)𝑘𝑝𝜷 ∧ 𝜶 

(27) 

The wedge product is associative ⇒  

 
(𝒖 ∧ 𝒗) ∧ 𝒘 = 𝒖 ∧ (𝒗 ∧ 𝒘) 

(28) 

To understand equation (27) better, consider the wedge product of a bivector with a vector ⇒ 

 

(𝒖 ∧ 𝒗) ∧ 𝒘 = (−1)2∙1𝒘 ∧ (𝒖 ∧ 𝒗) = 𝒘 ∧ (𝒖 ∧ 𝒗) 

(29) 

Equation (29) can also be derived by using equation (20) twice and using the associative 

property ⇒ 
(𝒖 ∧ 𝒗) ∧ 𝒘 = −(𝒖 ∧ 𝒘) ∧ 𝒗 = (𝒘 ∧ 𝒖) ∧ 𝒗 = 𝒘 ∧ (𝒖 ∧ 𝒗) 

(30) 


