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Introduction

This write-up discusses geometric invariants with regards to tensors. Figure 1 shows the
relationships between the various basis vectors and vector components.® Notice that the basis
vectors are transposed to keep the transforms consistent as shown below. The default vector is a
row vector, and the basis vectors are rows of the basis matrices. A vector or matrix is applied on
the left of an operator.
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Equation (1) shows the definitions of a vector in terms of its basis vectors.
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where
v' is a row vector of components

E is a matrix of basis vectors where each row is a basis vector
e; =[€i1 " ein] is the it" basis vector
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Similarly, equation (2) gives the matrix equation for a vector in terms of a set of reciprocal basis

vectors.

V= Ul'(l)i = Ul'W

()

In Figurel, a vector or matrix operates on the left of a matrix transform as illustrated in the

examples below.
Equations between nodes 1 and 4

7; = 7'G = v'BG = v'BAGAT = v'GAT = v;AT

Equations between nodes 4 and 1

v = ﬁi[AT]_l = ﬁiBT

E = AE =
E =A"'E =BE
because B = A~ 1

Transposing E =

(3)

(4)
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ET — ETBT
(6)
In general, a basis set does not have to be orthogonal or normalized. It does have to span the

vector space meaning that any vector in the space can be written in terms of the basis set. When
computing geometric invariants, properties of the basis set need to be taken into consideration.

Geometric Invariants

Inner Product

The matrices A and B were originally set up so that the inner product is invariant under a
coordinate transform. Consider the following definitions of two vectors.

u=uWw covariant vector components
v=v'E contravariant vector components

It is necessary for one vector to have covariant components and one to have contravariant
components.?

From Figure 1
l_ll' = uiAT
vt = v'B

Putting the above equations together and taking the inner product =

wATW[v'BE]" = wATWET[v'B]" = wAT(E-)TET[v'B] = wAT[v'B]"

u-v

because W = (E~1)T — see 2
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Further simplifying =
— — i T T T
u-v=wA [v'B] =wA"BTy(v') =uw(v') =u-v

because B = A~1 see 2

(")
Equation (7) shows that the inner product is invariant under a coordinate transform as was
expected. An application of an inner product is to compute the magnitude squared of a vector.
|v|? = vi(vi)T = viG[vi]T
(8)
where
G = EET is the metric
v' = contravariant vector components
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Figure 2 shows a parallelogram defined by 2 vectors in cartesian coordinates.
area = base X height = |u||v|sin(a — B) = |u||v|[sin(a)cos(B) — sin(B)cos(a)]
9)
lulsin(a) = u,,
[v|cos(B) = vy
lv|sin(B) = v,
|lu|cos(a) = u,
(10)



Equations (9) and (10) =

signed area = Uy Uy — Vyly, = Uy V) — Dyl

(11)
Equation (11) can be looked at as a determinant. Define
_ _ Uy uy _ Uy uy 1 0
M=VE= [vx vy] E= [Ux vy] [O 1] =
signed area = det(M) = det(VE) = det(V)det(E) = u,vy, — vyu,
(12)

Equation (12) uses the properties of determinants® and gives a signed area in Cartesian
coordinates. For general coordinates, transform from a Cartesian to a general coordinate system
as shown in equation (13).

v=7F
u=ukE
(13)
Create a matrix with vectors u and v =
S (77U 7%
M=VE=[- -]EzVBAEzVE
Uy Dy
(14)
Equation (14) shows that the area is invariant under a transform as expected.
To see how the determinant transforms, take the determinant of equation (14) =
det(M) = det(VE) = det(V)det(E) = det(V)det(E)
(15)

Area Example
For polar coordinates

x =1 cos(0)
y = r sin(0)

cos(6) sin(0)

A(r,0) = —rsin(0) 1 cos(6)

3 Determinants
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Now make A(r, 8) an unnormalized transform= use

11
A(10,%)= NG
—5vV2 5v2

1 1

o-rh| 7T

u=1[3 4]
v=[1 2]
v=[3 ;]

area =det(V)=6—4 =2

Transform to the unnormalized polar coordinates using B (10,%) =

1 1 1
7 % | [P sz
o, 31 V2 V2 | 52
V_[ﬁ]_VB_LL z]l 1 1 - 33 1
5.2°2 5.2%: 5v2
1 1
= _ [e1 V2 V2
=lel=2e=| T

5-2°2 5.2%
_ _ 1
signed area = det(V)det(E) = 3 X 10 =2

which is the same as equation (17) as expected

(16)

(17)



Area Calculations Using the Wedge Product

Given vectors

a =a'e; = a'e; + a’e,

b =b'e; = b'e; + b?e,

The wedge product for vectors is given by equation (18).
aAb = (ale; + a’e,) A (ble, + b?e,) =

alel N b161 + a161 N bzez + azez A b181 + azez N b282

(18)
where
A is the wedge product operator
Note: the wedge product is distributive
To simplify equation (18),
use the following properties of the wedge product operator.
uAu=20
(19)
UuANv=-vAu
(20)

Note determinants have the same properties as equations (19) and (20). Two identical rows or
columns in a matrix will give a determinant of 0. Interchanging two rows or columns, reverses
the determinant’s Sign.

Using equations (19) and (20) equation (18) =

al 2

aAb =a'e; Ab*e, — b'es Aa*e, = (a'h* — b'a*)e; Ae, = det ([bl Zz

]) ejNey
(21)
e N\ e, are called bivectors ( 2-vectors ) and are a basis of coordinate plane segments spanned

A~

by e; and e,- e.g. {9, X2, 2}*. A bivectors’ magnitude is the area of the parallelogram defined
by e, and e,.as shown in Figures 2a and 2b. The sign is determined by putting the tail of the
second vector at the tip of the first vector. If the arrows are counterclockwise, the sign is positive,
otherwise it’s negative. Figure 2a shows a positive direction and Figure 2b shows a negative
direction.

4 Linear Algebra via Exterior Products - Sergei Winitzki, page 73
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The area calculation is given by equation (22).

UND = (ule, + u’e,) A (vle, + 72e,)
=ulvl(e; Ney) + ulv?(e, Ney) + ulvli(e;, Ney) + u’v?(e, Aey)
=ulv?(e,Ney) +uvi(e, Ney) = (Wv? —u*vl)e, Ne,

(22)

Equation (22) is simply the determinant of IV multiplied by e, A €,. The bivector is the determinant
of E multiplied by e; A e,

él N éz = det ([;;]) eq A e,
(23)

UAND =det ([:ﬁi]) det ([2]) ei e,
(24)

The determinant automatically takes care of the sign. Note that e; A e, is considered a basis.

Bivectors form a basis of coordinate plane segments using basis vectors, so equation (24) is the
result.®

5 Linear Algebra via Exterior Products - Sergei Winitzki, page 77
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Volume

The signed volume in three dimensions can be computed using three vectors that span the space
as shown in equation (25).

Define three vectors u, v, w in basis set E =

signed volume = uAv Aw = det(V)det(E)e; Ne, Aes

(25)
where
u €1
V=|v and E = lez]
w €3

The basis set is now a tri-vector (3-vector) and are parallelepipeds.

Equation (25) can be extended to n dimensions.® The cross product is only valid in 3 and 7
dimensions.” The basis set of n-vectors is contained within R™.

signed volume in R" = vy Avy A+ Av,, = det(V)det(E)e; Aey A---e,

V1 €1
L) €3
V=1. and E=]|.
vn en

e; Ney A - ey, is an n-dimensional parallelepipeds basis

Note that in R™, an arbitrary object can be made from basis elements of R™ and
subsets of R™.

Further Considerations of Wedge Products

An arbitrary wedge product can be written as shown in equation (26) and is called a k-vector
a= 'U1/\'l72/\"'/\'l7k

(26)
The alternate property of equation (20) can be generalized as shown in equation (27).

Given a k-vector and a p-vector

6 Exterior Algebra

7 Cross product
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a= vl/\vz/\“'/\vk
B=v AV A AV
anB=(CD"Bra

(27)
The wedge product is associative =
(uAv)Aw=uAVAW)

(28)
To understand equation (27) better, consider the wedge product of a bivector with a vector =

UurAv)Aw=(D*'wWAAv) =wA(uUAD)

(29)
Equation (29) can also be derived by using equation (20) twice and using the associative
property =
urAv)Aw=—-(uUuAwW)Av=WAUAV=WA(UAD)

(30)
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