Coordinate Transformation of Gradients and Partial Derivatives
By
Al Bernstein
4/8/2022

http://www.metricmath.com
al@metricmath.com

Introduction

This writeup investigates how gradients of scalar fields and partial derivatives of vector fields in
2-D behave under a change in coordinates. The scalar field is a function of coordinates and gives
a number at each coordinate point. Because each point of the scalar field refers to a physical
point, the scalar field is independent of any given coordinate system. An example of a scalar
field is given in equation (1) that depends on the x coordinate only.

p(x,y) = (X,y) = x*
1)

where

¢(x,y) and @(x,y) are the scalar functions in coordinate systems (x,y) and (x, ¥)
respectively

Transformation of basis vectors under a change of coordinates has been discussed in previous

writeups.! Before continuing, it will be helpful to discuss coordinate transform equations and
how they relate to coordinate grids and basis vectors.

Coordinate Transforms, Grids, and Basis Vectors

We use coordinate rotation as an example for this section.

Figure 1 shows a rectangular grid.

1 CoordinatesSummary



http://www.signalscience.net/
http://www.signalscience.net/
http://www.metricmath.com/
mailto:al@metricmath.com
https://www.metricmath.com/_files/ugd/55ccdb_90cb4675cf0048c5b96ef66368bf2e83.pdf

Rectangular Grid

x=-500 x=-389 x=-278 x=-1.67 x=-056 x=0.56 x=1.67 x=2.78 x=3.89 %= 5.00
h h ' 'y A A & A A A

» y=5.00

»y=3.89

»y=2.78

» y=1.67

» ¥=0.56
Yo

» y=-0.56

»y=-167

»y=2.78

» y=-3.89

» y=-5.00

x
Figure 1

The grid lines are generated in the x direction by holding y constant and varying the x values.
Holding x constant and changing y values will generate grid lines in the y direction. This idea
may seem basic, but it is important to understand the procedure when the grids are not made up

of straight lines. Figure 2 shows the grid from Figure 1 but rotated by g

Rotated Rectangular Grid

Figure 2



It’s important to note that Figure 2 shows the rotated grid (x, ¥) graphed in (x, y) coordinates. A
closeup of the rotated axes, (x,y) relative to the x and y axis is shown in Figures 3a and 3b.

X

Figure 3a Figure 3b

In Figures 3a and 3b, the X and y axes are the hypotenuses of right triangles. Equation (2) gives
the x and y coordinates as a function of the x and ¥ coordinates.

x = xcos(0) — ysin(0)
y = xsin(6) + ycos(6)

)
It’s important to interpret equation (2) correctly. The input is the coordinate (x, y) - distance
(numbers) along the x and y vectors respectively. The output is the coordinate (x, y) - distance
(numbers) along the x and y vectors respectively.
Example

Given the following input - (x,y) coordinates and 6 =
(%3 = (1,0 and6 ==

The resulting (x,y) coordinates are given by equations (2)

x = (1)cos (g) +0=

y = (1)sin (g) +0=
(3a)

1 V3
Equation (3a) shows that one unit along the x axis gives (x, y) coordinates of 2 and -

For (%,7) = (0,1) and 8 = g

x=0—(1)sin(g)+0= —?



y=0+(1)cos(g)+0=%

Equation (3b) shows that one unit along the y axis gives (x, y) coordinates of —

Basis vectors transform as shown in equation (4)

0 0Jxd 0dyaod 0
ﬁ_ﬁﬂJra_a_ cos(@)—+sm(9)—

0 _x0 oyo 0l
9y ayox ayay gy T 0\W%,

Equation (5) gives the A matrix defined by equation (4).

_[cos(@) sin(8)
~ [—=sin(@) cos(6)

Equation (6) gives the B matrix.

cos(0) —sin(@)

B=A"= [sin(@) cos(8)

Figure 4a and 4b show the inverse coordinate relations for the rotation.

Figure 4a Figure 4b

(3b)
J3 1
> and >
4)
(5)
(6)



The x and y axes are the hypotenuses of the right triangles in Figures 4a and 4b. Equation (7)
gives the (x, ) coordinates as a function of the (x, y) coordinates.

xcos(0) + ysin(0)
—xsin(0) + ycos(0)

X =

3_/ =
(7)

Compute ¢(x, y) in the Rotated Frame

We want to describe the same scalar field in the original and rotated coordinate systems to show

that ¢ (x,¥) = @(x, y). The physical field consists of the same points but expressed in different

coordinate systems. Using the definition from equation (1) and the relations from equation (2) =

o, y) =[x y) =x>=

p(x,y) = (fcos(@) — ysin(é?))z

(8)
For example, set
g = T
-3
Equation (8) =
2 i _ —_—— -
o B N T ¥ V3 \ 3y% V3xiy x2
R e e e
(9)
Example Calculation
x=3,y=0>=
(3,00 =9
0 = T
K
- . _ T 3
X = xcos(0) + ysin(6) = 3 - cos (§) =3 /
— . . T 33 2
y = —xsin(0) + ycos(8) = =3 - sin (5) --=-
(10)

Equation (10) show the (i, y) coordinates corresponding to (x,y) = (3,0)



Inputting x and y from (10) into (9) =

3/ 3\ V3 3/ 2
o(5-7)=i-7) 20 7) 0

327 (3%2\( 3% +1<3)2_81+27+9_81+54+9_144_9
4\2) 16 8 16 16 16 16 16

44 4 2 2
(11)
which is what is expected.
Now create a table with a set of x points (x, 0) and show the results for ¢ (x, y) and ¢ (X, 7).
X y x y ey | o&y)
0 0 0 0 0 0
1 0 1 V3 1 1
2 2
2 0 1 -3 4 4
3 0 3 3%/2 9 9
2 | "%
4 0 2 —2/3 16 16
5 0 5 | 55| 25 25
2 2
0 3 _3%, 36 36
7 0 7 N EEE 49
2 2
8 0 4 —44/3 64 64
9 0 9 9 81 81
A
Table 1
Test for negative x = ¢(—9,0) =81 =
_ T 3
X =-9 cos(g) =9—§
_ T
y=-9 Sln(g) = E\/g
9 9 4 3/9 —\° V37 9\/(9 1/ 9\* 729 486 81 1296
337) 36 - F G T
(p( 2’2 4 2\/§ 2 2 2\/§ +4 2 16+16+16 16
=81
(12)



Compute Gradient in General Coordinates

Coordinate Relations for general coordinates are given by equation (13).

ql(ﬁl qn) =
qn(ql qn)
(13)
Given a function ¢(qt, g%, --- q™), the components of the gradient are given by
do
(Vo); = 2q
(14)
Looking at how the V¢ components transform under a coordinate change =
99 _ 99 00’
dgt  dq’ 97"
(15)
Fori=(1,2),j =(1,2),and ¢! = (x,y) >
do d¢
(Vop); = [a 3y
Using the Einstein summation rule, equation (15) =
Op _09p0q' 39 04" 3¢ _0pdx g0y
gt  0dqltogt 0q20gt  0x Ox0dx O0yox
Op _0p0q' 09 04" _dp_0pdx 0pdy
g2 0qlag: 0q?0g:? 0y 0xdy O0yoy
(16)
Equation (16) =
Jdx Ox
dp dp1 _6(p6<pﬁ6_37_6<p6<p]T_ r
[af ay] = (Vo= [6x ayllay ay|~ lox 3y A7 = (Ve)iA
0x 0y
(17)

where
V is the gradient with respect to the (&, ¥) variables
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Equation (17) is the prototype of a transformation of the components of a covariant vector from
(x,y) to (x,y) coordinates as shown in equation (17)

171 = viAT
(17)
So, if the components of V¢ transform as a covariant vector, the bases must be one forms =
_9¢ 79
Vo o dx + 5 dy
(18)
The gradient (V¢); can be solved for in terms of (V¢); as shown in equation (19).
(Vo); = (V)BT
(19)
Example
__[cos(8) sin(6)
~ —=sin(0) cos(6)
For
px,y)=x*>
Vo(x,y) =[2x 0]
S N _ T cos(@) sin(0) T _ [cos(@) —sin(0)
(V)i = (Vo)iA" = [2x 0] —sin(0) cos(0)] [2x 0] sin(0) cos(0)
= [2xcos(0) —2xsin(0)]
(20)
We can convert equation (20) to (x, y) coordinates by using equation (2)
x = Xcos(0) — ysin(0) =
Vo = [2[xcos(8) — ysin(8)]cos(0) —2[xcos(0) — ysin(0)]sin(6)]
(21)

To check equation (21), compute Vg straight from equation (2)

9(%,7) = (xcos(8) — ysin(0))” =



Vo = [2[xcos(8) — ysin(8)]cos(8) —2[xcos(8) — ysin(8)]sin(6)]
(22)
Equation (22) agrees with equation (21).

Using equation (19), we can transform V¢ back to Ve.

1 _ [cos(8) —sin(6)

B=A"= sin(8)  cos(0)

Vo = VBT

= [2[xcos(8) — ysin(B)]cos(0) —2[xcos(8) — ysin(0)]sin(6)] [ cos(8)  sin(6)

—sin(8) cos(8)
Computing (Ve), and (Vg),, separately =

Vo), = [2[xcos(8) — ysin(8)]cos?(0) + 2[xcos(8) — ysin(8)]sin?(0)]
= 2[xcos(0) — ysin(0)]

(Vo), = 2[xcos(0) — ysin(8)]cos(8)sin(0) — 2[xcos(8) — ysin(B)]sin(B)cos(6) = 0
Using equation (2)=
Vo), =2x=>

Vo =[2x 0]
(23)
as is expected.

Compute Gradient in Polar Coordinates
The coordinate relations are

x =rcos(0)
y = rsin(6)
(24)
dx Jdy
ar or| _[ cos(8) sin(6)
ox 0x| |-rsin(@) rcos(6)
6 96
(25)
The general equation for a change of basis for one-forms is given by

u = 'L_llW = uiW
(26)



The conversion equations are shown below

W =BTW
(27)
'l_li = uiAT
(28)
Using equation (28) =
- r_ [0 0¢][cos(6) —rsin(6)
V)i = (Vp)iAT = [6 ] [sin(@) r cos(0)
[— cos(0) + —sm(@) —g—irsin(e) + g—(;rcos(e)
(29)

The coordinates in equation (29) can be converted to (r, 8) by using the chain rule as shown in
equations (30).

aqo aq) Ox Opdy 0J¢ do
or odxor + dy or © Ox cos(0) + dy sm(@)

6<p a(p dx Od¢ ay dp do
36 ~0x06 Tayas - ax (@) +5 reos(6)

(30)
Note: the A matrix is applying the chain rule, so it’s automatically converting from (x, y) to
(r, 8) coordinates — in general (x,y) coordinates.
Using equation (27) =
drl _ o7 dx]
[dg] =B dy
(31)
Note: all the differentials are row vectors
sin(6
cos(6) — r( )
— A1 _—
B=4""= , cos(0) =
sin(6)
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[dr

40 sm(@) cos(@)

cos(8) sin(O)
&)=

dr = cos(8)dx + sin(8)dy
sin(0) cos(6)
do = — " dx + dy

(32)

Now write the basis vectors in equation (32) in terms of normalized basis vectors. Note: dx =

dx,and dy = dy

dr = |dr|d# = |cos(0)dX + sin(8)dy|dF =

ldr| = Vdr-dr = \/COSZ(H) +sin2(0) =1=
dr = dr

sin(0 cos(60 ~
— r( )da?+ ()dff g =

do = |d6|do =
T

|dO| = VdO - db = \/riz (sin2(8) + cos2(9)) =%:>

1 .
df =—-db =
T

Note: [dx] are row vectors
dy

Putting the components and basis vectors into equation (26) =

ot =[5 5llael =l Flis] = o

Equation (35) is the gradient of the polar system.

11
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Gradient as a Vector in Polar Coordinates
Convert the gradient from a one form basis to a vector basis =

u=ﬁiVT/=uiW

Foru=V¢ =

Vo = Vo)W = (Vo)W

Also, the equations for raising and lowering a vector and one form are given below - See?

u; = u'G

ul =u;Gt

Now the basis vectors are the rows of both the E and W matrix, so
E=WGaG

W=EG1?

cos(0) sin(8)
W =BT] = _sin(@) cos(8)

r Tr

E=AI=A

— _ [ cos(&)  sin(6) |[cos(8) —rsin(@)]_f1 0
G=EE" =Ad"=|_ o0 TCOS(H)] [Sin(9) TCOS(H)]_[O 4
) cos(8)  sin(8)||cos(8) _sm()

Gl=wwT = sm(e) 005(9) sin(®) cos(e) [

2 Coordinates Summary p. 5-6
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cos(8) sin(6) .
E=WG=| sin(6) cos(6) [1 O] = [ cos(6)  sin(6)

0 r2l  |-rsin(@) rcos(6)
T T
(42)
Equation (42) correctly transforms W to E
Also
G = AGAT
(43)
G'=B"G'B
(44)
The right side of equation (26) =
w,W =u'E = (Vo)W = (Vo)'E
(45)
In Cartesian Coordinates, E, W, G, and G~ all equal the identity matrix I =
ui =u; =
Equation (45) =
dp 0@1[é,
— l A
(Vo)idx' = (Vo) 55 ax‘ [ax ay] [ey]
(46)
The left side of equation (26) =
i a o = . [0p 10¢ [ cos(8) sin(G)]IaxI
—HiE — 157 — f-1F = |YY Y9¢
W =u'E =u,G 'E = (Vp);G'E iy _] rsin(8) rcos(9) l J
dy
[0 1 0¢][ cos(6) sin(0) 1|ox _[0e ] COS(H) +sm(9)
“Lor r300)l-rsin(@) rcos(@)I]|9 | lor 3(’)9
rr (®) (®) @ T —rsm(H)—+rcos(t9)
[0 1 0¢] [ 1 6(,0] [ér
Lor 1306 r— r2 961 1ég
(47)
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Equating equation (47) with equation (46) =

((p)laxl_ ar le";?g” ] [3(9[: gi] [Z]=(V axt [g(p a(p] [ey]

Note: (Vo)! = (de)!

(48)

Directional Derivative

The derivation of the directional derivative will follow — see 3. Consider a curve C(1) on a
manifold and a point P on C (). Define A as a parameter along the curve, set C(0) = P and let f
be a function.

Define a vector on a two-dimensional surface.

v =" —+vyi— [v*  vY]
0x dy
(49)
Define a section of curve that intersects v as shown in equation (50) =
0 d
CA) =v*A—=+vVA—=[v*2 vl =[x V]
0x dy
(50)
where
x = Av*
y = AvY
Given the above parameters,
C(0)=[0 o]and
C() =[* v]
Treat f as a function of n variables —n = 2 in the two-dimensional case
f(CW) = fwv*a v2D = f(x,y)
Expand £(C (1)) in a two-dimensional Taylor Series to first order =
0 0 0 0
FEW) = Fey) = FO.0) +x 24y o= £(0,0) 4 2D 4 0725
ay 0x ady
(51)

3 Sadri Hassani, Foundations of Mathematical Physics, Allyn and Bacon, 1991, pp. 257-258
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Now, find the derivative at point P along C (A1) through vector v.

af af
af(c@y) _ SO0 TVAG+ v A5y
ar A% A
(52)
Because,
li A =i 1 1
A4 Asol
Equation (52)=
df(cv) _  of of 0 0 of
ANV L y_ L —[x y = pi L
VU (” ax Y ay)f e
(53)
Equation (53) can be converted using the metric to v;(df)! =
- Of .
D,,f = Vf-v = Ulﬁ= Ul'(df)l
(54)

Compute Transformation of a Partial Derivative — Ovi/aqi — using Standard
Index Equations

The derivation of the coordinate transform of a partial derivative using standard index equations
will follow - see.*

gt .
vlzaqjvf
(55)
ovt a9 (07" .
= =
agk agk\oq’
(56)

The right side of equation (56) takes a derivative of the expression in parentheses with respect to
g". This can be changed to take the derivative with respect to g* by using equation (57).

4 David McMahon, Relativity Demystified, McGraw-Hill, 2006, pp. 65 - 66
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aqt {1,1 =m
agm ™o, l#m

(57)
Equation (57) can be rewritten as

a l

% _

dq'
(58)

Using equation (58) in equation (56) =

vt 0 [(9q'0q" . aqt 0 (ogt .\ 9q'[ 9%gt . 9g‘ov/
= — v | === —p) | = )+ —
agk 0dgk\oqloq’ 0q* aqt \dq’ dgk|oqtoq’ dq’ dq'

_9q" 0%q' . dq' 9gt ov’
~9gkaqlag C " agkaql aq!

(59)

Equation (59) is the standard equation for the transformation of a partial derivative.
Note: the partial derivative is not a tensor. To be a tensor, the equation would have to be of the
form.

oD ov’
a7~ Tag
(60)
where
aql 0g"
- gk aql

Compute Transformation of a Partial Derivative — avi/aqi — Using Matrix
Approach

The relations in equation (61) are used to convert equation (59) using the matrix approach—=

_0q 0q"
~dg 0g~
g 0g
p=24_9%
dq 0q’
7t = v'B

(61)
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Using the expression for the A matrix from equations (61) see °, equation (59) =

vt 0 [(9q' 0" . aqt 0 (oq' .
— =—— v/ | = —— v | =
agk 0dgk\oqtaq’ 0q* dqt \dq’

(62)
Now finish putting equation (62) into matrix format.
vt =1v] aqf => vt =v'B
vt 0 [ iB]_aql vt N , 0B
agk og . 1T agk|agt” T aq!
(63)
But in this case k is a fixed index, so
ov' _ dq" aviB+ ,0B] _aq’ aviB+ , 0B N +6q" aviB+ , 0B
6@" - aqk aql v aql - aqk aql v aql aqk aq" v aqn
(64)
The A matrix is defined below.
aq' oq"
A __[aq]__ oaq  oq
66_1 aql aqn
7 7
(65)

Equations (65) is the definition of differentiating a vector q with respect to g.

Notice, in equation (65), that each row of the matrix is the derivative of the vector with respect to
a single variable g*. Using this same logic =

B
oB |97
9g° | 5B

ag"

(66)

Picture equation (66) as a vector of matrices

5 CoordinatesSummary-pages-8-11
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. 0B
L

V' —
. 9B oq!
V' = :
9q° | o
v a—qn
(67)
i 0B __
v 6_511 = a vector

Picture equation (67) as a vector of vectors or a matrix. It could also be pictured as a set of
equations where each equation uses a derivative with respect to a fixed index - gP as was used in
previous writeups.

The A matrix writes the primed basis vectors as a function of the non-primed basis vectors.
Similarly, the B matrix writes the primed vector components in terms of the non-primed vector
components. The coordinate relations can map between the primed and non-primed coordinate
variables.

Equation (64) can be put into a form using the A matrix as shown in equation (68).

First declare the vector u

B 6viB+ , 0B aviB , OB aviB+ , 0B
“ZllagT TV aq1] [a47° TV ag2 aqn” "V aqn
T
ot ovt
— | =A4-uT = qyT1T = 9y - AT
[66"] A-u iaqk [A-u'] u-A

—laviB+ iaBlA + +IaviB+ ;98 A
~ |aqt Ua—ql k1t aqn UW kn

(68)
In equation (68), u is a block vector whose elements are vectors. The ‘-* is used to indicate that
it’s a block vector operation as indicated in equation (68). The indices are reversed because

[AT];; = Aj;
Parabolic Coordinates

Now we will see an example of how partial derivatives transform. We pick parabolic coordinates
because the derivatives with respect to the basis vectors do not vanish. The coordinate equations
are given by equation (69).

X =0T
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y=5@*-0?)
(69)

Now the A matrix is given by equations (70).

d 0x0 0dyad 0 0

96 _dodx dcay ‘ox ay

d 0x0d 0Jyaod 0 0

97 otox Taray Cox ' 'ay
(70)

Equation (70) =

(71)
where the basis vectors are the rows of A.

o=[t —o0]
t=[0 1]

Inverse Parabolic Coordinates

Using Maxima® to solve equations (69) for o and T = 4 roots

g=—|J 2 tyi—y

VeE+y? —y(Jx? +y% +y)
X

1.

T =
(72)

o= _[Jx2+yi—y

8 https://maxima - computer algebra system
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T () +y

T =
X
(73)
3.
a=—\/— x2+y?2—y
| -y )
T =
) (74)
4.
0=\[— x2+y?—y
[T -y -y)
o
. (75)

Figure 5 shows a parabolic coordinate grid.

Parabolic Grid

=167 o= -0.56 o= 0.56 o=1.67

= 5.00

7=5.00

-10

= T=-1.67 7=-0.56 1=0.56 =167

Figure 5

Several things in Figure 5 need to be discussed. First the range of both o and 7 is [—5,5]. A
curve of constant (—o) or (—1) is the same curve but progresses in the opposite direction as
curves of constant ¢ or t. The grid can’t be used in the same way an xy grid is used to locate
unique points. For example, the ¢ = 0.167 intersects T = 2.78 in two places. The grid lines do

20



give the correct direction of the basis vectors. The basis vectors (scaled) are shown at point
(6 = 5,7 = 2.78) in Figure 5. The o basis vector points along the constant z grid line in the
positive direction. The  basis vector points along the constant ¢ grid line in the positive
direction.
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Compute 37'/33" in Parabolic Coordinates

It’s easier to use (o, T) coordinates for the computation.

1 T 0o
_ a1
B=4 _1'2+o'2[—0' T]
(76)
B _ 04 ( 1 ){r 0] _ 1 —20T 12—02]
doc  do\\12+¢2/l=0 1) (2 4+062)2|-(?-0%) 201
(77)
0B 0 ( 1 )[T O'] _ 1 [—(12—02) —210 ]
ot dt\\12+o02/l-0 1] (12 +02)2 270 —(1%2 - 0?)
(78)
Compute Vector with Respect to o
Plugging (77) into equation (65)
ot ov' 1 [ T 0] vl —207 72 — g2
doc 9o (12 + o) l—0 1l " (124 062)2|-(t?-0?%) 2071
(79)

Define a vector field using Cartesian basis vectors with (o, 7) coordinates. Follow the numbered
steps below at each field point to be clear as to what this means =

1.) Start out picking specific (o, T) coordinate values

2.) Use coordinate relations — equations (69) — to convert the (o, 7) coordinates to (x, y)
coordinates

3.) The (o, 1) and (x, y) coordinates refer to the same geometric point

4.) o and t are numbers, so use these numbers to define a vector field using the (x, y) basis
vectors e, and e,,.

5.) The A and B matrix are formed using the same (o, ) numbers.

vl =ce, +1e,=[0 1]
(80)
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First Compute the derivative in the (x, y) system and putting into equation (79)

vt

20 11 0l
(81)
Putting equation (81) into equation (79) =
ovt 1 0] [ T O [0 1] —201 2 —0?] _
do (24 02)l=0 11" (12462)2|-(1?-0?%) 2071 ]
_ [t gl [-20%t—1%+10% o01%—0°%—207%]
(12 4+ 02) (12 4+ 02)?
(82)
Multiply the left side of equation (82) by (72 + ¢2) to give a common denominator of
(2 +02)?% >
07" [t3+10% o1 +03] | [-20%1—13 + 162 01% — 03 — 2077
do (12 + g2)2 (1% + 02)2
¥ +102—102—1% o012+ 0% —01? —0°]
B (12 4+ 02)?
=[0 0]
(83)
Now transform the vector to the (o, T) system first, and then taking the derivative as a
comparison.
Using B from equation (76) =
, , [0 Tl o7 lotr—10 o%+12]
Sl— iR — — —
U_UB_TZ+02[—G T]_ 12+ 02 0 1]
(84)
avt  alo 1]
do  do [0 0]
(85)

Equation (85) agrees with equation (83) as expected.
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Compute Vector with Respect to T

oVt _ 0o 1]
ot ot

=[0 1]
(86)

Putting equations (80), (78), and (76) into equation (65) =

ovt [0 1] [ T O [0 7] [—(z2—0?) —210
it (2+02)l=0 vl (124 02)2 2710 —(t%2 - 0?)

[0 1] [-0(t?—-0?%)+21t%0c -210°—1(1%—0?)]
(2 + 02) + (12 + 02)2

(87)

Multiplying the left side of equation (87) by (72 + ¢2) to get a common
denominator of (2 + 62)? =

[—012 =03 13+ 102] N [—0t2 4+ 03 + 2720 —-210% — 13 + 102]
(72 + 02)2 (12 4+ 02)2

[—0t2 — 03 — 012+ 03 4+ 2720 13 +10% — 2702 — 13 + 102]
(2 + 02)2

=[0 o]
(88)

Now transform vt to ¢, and then take the derivative.
Using B from equation (76) =

ot —10 0% +7%] _
12+ 02

i —

= v'B

v =

[0 T][T a]

T2t o2l-0 1 0 1=

ovt _adlo 1]
ot 0t

=[0 0]
(89)

Equation (89) agrees with equation (88) as expected.

24



