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Introduction 
 

This writeup investigates how gradients of scalar fields and partial derivatives of vector fields in 

2-D behave under a change in coordinates. The scalar field is a function of coordinates and gives 

a number at each coordinate point. Because each point of the scalar field refers to a physical 

point, the scalar field is independent of any given coordinate system. An example of a scalar 

field is given in equation (1) that depends on the 𝑥 coordinate only.  

 

𝜑(𝑥, 𝑦) = 𝜑(𝑥̅, 𝑦̅) = 𝑥2 

(1) 

where  

 

𝜑(𝑥, 𝑦) and 𝜑(𝑥̅, 𝑦̅) are the scalar functions in coordinate systems (𝑥, 𝑦) and (𝑥̅, 𝑦̅) 
respectively 

 

Transformation of basis vectors under a change of coordinates has been discussed in previous 

writeups.1 Before continuing, it will be helpful to discuss coordinate transform equations and 

how they relate to coordinate grids and basis vectors. 

 

Coordinate Transforms, Grids, and Basis Vectors 
 

We use coordinate rotation as an example for this section. 

 

Figure 1 shows a rectangular grid. 

 
1 CoordinatesSummary 
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Figure 1 

 

The grid lines are generated in the 𝑥 direction by holding 𝑦 constant and varying the 𝑥 values. 

Holding 𝑥 constant and changing 𝑦 values will generate grid lines in the 𝑦 direction. This idea 

may seem basic, but it is important to understand the procedure when the grids are not made up 

of straight lines. Figure 2 shows the grid from Figure 1 but rotated by 
𝜋

3
. 

 
Figure 2 

  

𝑥̅ 

𝑦̅ 
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It’s important to note that Figure 2 shows the rotated grid (𝑥̅, 𝑦̅) graphed in (𝑥, 𝑦) coordinates. A 

closeup of the rotated axes, (𝑥̅, 𝑦̅) relative to the 𝑥 and 𝑦 axis is shown in Figures 3a and 3b. 

 

 

 

 

 

 

 

 

 

Figure 3a       Figure 3b 

 

 

In Figures 3a and 3b, the 𝑥̅ and 𝑦̅ axes are the hypotenuses of right triangles. Equation (2) gives 

the 𝑥 and 𝑦 coordinates as a function of the 𝑥̅ and 𝑦̅ coordinates. 

 

𝑥 = 𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃) 

𝑦 = 𝑥̅𝑠𝑖𝑛(𝜃) + 𝑦̅𝑐𝑜𝑠(𝜃) 

(2) 

 

It’s important to interpret equation (2) correctly. The input is the coordinate (𝑥̅, 𝑦̅) - distance 

(numbers) along the 𝒙̅ and 𝒚̅ vectors respectively. The output is the coordinate (𝑥, 𝑦) - distance 

(numbers) along the 𝒙 and 𝒚 vectors respectively. 

 

Example  

 

Given the following input - (𝑥̅, 𝑦̅) coordinates and 𝜃 ⇒ 

 

(𝑥̅, 𝑦̅) = (1, 0) and 𝜃 =
𝜋

3
 

 

The resulting (𝑥, 𝑦) coordinates are given by equations (2) 

 

𝑥 = (1)𝑐𝑜𝑠 (
𝜋

3
) + 0 =

1

2
 

𝑦 = (1)𝑠𝑖𝑛 (
𝜋

3
) + 0 =

√3

2
 

(3a) 

Equation (3a) shows that one unit along the 𝒙̅ axis gives (𝑥, 𝑦) coordinates of 
1

2
 and 

√3

2
. 

 

For (𝑥̅, 𝑦̅) = (0, 1) and 𝜃 =
𝜋

3
 

 

𝑥 = 0 − (1)𝑠𝑖𝑛 (
𝜋

3
) + 0 = −

√3

2
 

𝒙 
● 

𝒙̅ 

𝒚 

𝜃 

● 

𝒚 

𝒚̅ 

−𝒙 

𝜃 
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𝑦 = 0 + (1)𝑐𝑜𝑠 (
𝜋

3
) + 0 =

1

2
 

(3b) 

 

Equation (3b) shows that one unit along the 𝒚̅ axis gives (𝑥, 𝑦) coordinates of −
√3
2

 and 
1

2
 

 

Basis vectors transform as shown in equation (4)  

 
𝜕

𝜕𝑥̅
=

𝜕𝑥

𝜕𝑥̅

𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝑥̅

𝜕

𝜕𝑦
= 𝑐𝑜𝑠(𝜃)

𝜕

𝜕𝑥
+ 𝑠𝑖𝑛(𝜃)

𝜕

𝜕𝑦
 

 
𝜕

𝜕𝑦̅
=

𝜕𝑥

𝜕𝑦̅

𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝑦̅

𝜕

𝜕𝑦
= −𝑠𝑖𝑛(𝜃)

𝜕

𝜕𝑥
+ 𝑐𝑜𝑠(𝜃)

𝜕

𝜕𝑦
 

(4) 

 

Equation (5) gives the 𝐴 matrix defined by equation (4). 

 

𝐴 = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] 

(5) 

 

Equation (6) gives the 𝐵 matrix. 

 

𝐵 = 𝐴−1 = [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] 

(6) 

 

Figure 4a and 4b show the inverse coordinate relations for the rotation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4a     Figure 4b 

  

𝒚 

𝒙̅ 

● 

𝒚̅ 𝜃 

𝒙̅ −𝒚̅ 

𝜃 

𝒙 
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The 𝑥 and 𝑦 axes are the hypotenuses of the right triangles in Figures 4a and 4b. Equation (7) 

gives the (𝑥̅, 𝑦̅) coordinates as a function of the (𝑥, 𝑦) coordinates. 

 

𝑥̅ = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃) 

𝑦̅ = −𝑥𝑠𝑖𝑛(𝜃) + 𝑦𝑐𝑜𝑠(𝜃) 

(7) 

 

Compute 𝜑(𝑥, 𝑦) in the Rotated Frame 

 

We want to describe the same scalar field in the original and rotated coordinate systems to show 

that 𝜑(𝑥̅, 𝑦̅) = 𝜑(𝑥, 𝑦). The physical field consists of the same points but expressed in different 

coordinate systems. Using the definition from equation (1) and the relations from equation (2) ⇒ 

 

𝜑(𝑥, 𝑦) = 𝜑(𝑥̅, 𝑦̅) = 𝑥2 ⇒ 

 

𝜑(𝑥̅, 𝑦̅) = (𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃))
2
 

(8) 

For example, set  

 

𝜃 =
𝜋

3
 

Equation (8) ⇒ 

 

𝜑(𝑥̅, 𝑦̅) = (𝑥̅𝑐𝑜𝑠 (
𝜋

3
) − 𝑦̅𝑠𝑖𝑛 (

𝜋

3
))

2

= (
𝑥̅

2
−

√3

2
𝑦̅) =

3𝑦̅2

4
−

√3𝑥̅𝑦̅

2
+

𝑥̅2

4
 

(9) 

Example Calculation 

 

𝑥 = 3, 𝑦 = 0 ⇒ 

 

𝜑(3, 0) = 9 

 

𝜃 =
𝜋

3
 

 

𝑥̅ = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃) = 3 ∙ 𝑐𝑜𝑠 (
𝜋

3
) =

3

2
 

𝑦̅ = −𝑥𝑠𝑖𝑛(𝜃) + 𝑦𝑐𝑜𝑠(𝜃) = −3 ∙ 𝑠𝑖𝑛 (
𝜋

3
) = −

33 2⁄

2
 

(10) 

Equation (10) show the (𝑥̅, 𝑦̅) coordinates corresponding to (𝑥, 𝑦) = (3, 0) 
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Inputting 𝑥̅ and 𝑦̅ from (10) into (9) ⇒ 

 

𝜑 (
3

2
,−

3
3

2⁄

2
) =

3

4
(−

3
3

2⁄

2
)

2

−
√3

2
(
3

2
)(−

3
3

2⁄

2
) +

1

4
(
3

2
)

2

 

 

=
3

4

27

4
− (

3
3

2⁄

4
)(−

3
3

2⁄

2
) +

1

4
(
3

2
)

2

=
81

16
+

27

8
+

9

16
=

81

16
+

54

16
+

9

16
=

144

16
= 9 

(11) 

which is what is expected. 

 

Now create a table with a set of 𝑥 points (𝑥, 0) and show the results for 𝜑(𝑥, 𝑦) and 𝜑(𝑥̅, 𝑦̅). 

 

𝑥 𝑦 𝑥̅ 𝑦̅ 𝜑(𝑥, 𝑦) 𝜑(𝑥̅, 𝑦̅) 

0 0 0 0 0 0 

1 0 1

2
 −

√3

2
 

1 1 

2 0 1 −√3 4 4 

3 0 3

2
 −

3
3

2⁄

2
 

9 9 

4 0 2 −2√3 16 16 

5 0 5

2
 −

5

2
√3 

25 25 

6 0 3 −3
3

2⁄  36 36 

7 0 7

2
 −

7

2
√3 

49 49 

8 0 4 −4√3 64 64 

9 0 9

2
 −

9

2
√3 

81 81 

 

Table 1 

 

Test for negative 𝑥 ⇒ 𝜑(−9, 0) = 81 ⇒ 

 

𝑥̅ = −9 ∙ 𝑐𝑜𝑠 (
𝜋

3
) = −

3

2
 

𝑦̅ = −9 ∙ 𝑠𝑖𝑛 (
𝜋

3
) =

9

2
√3 

 

𝜑̅ (−
9

2
,
9

2
3

3
2⁄ ) =

3

4
(
9

2
√3)

2

−
√3

2
(−

9

2
) (

9

2
√3) +

1

4
(−

9

2
)

2

=
729

16
+

486

16
+

81

16
=

1296

16
 

 

= 81 

(12) 
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Compute Gradient in General Coordinates 

 

Coordinate Relations for general coordinates are given by equation (13). 

 

𝑞1(𝑞̅1 ⋯ 𝑞̅𝑛) ⇒ 

 

⋮ 
 

𝑞𝑛(𝑞̅1 ⋯ 𝑞̅𝑛) 

(13) 

 

Given a function 𝜑(𝑞1, 𝑞2,⋯ 𝑞𝑛), the components of the gradient are given by  

 

(∇𝜑)𝑖 =
𝜕𝜑

𝜕𝑞𝑖
 

(14) 

 

Looking at how the ∇𝜑 components transform under a coordinate change ⇒ 

 

𝜕𝜑

𝜕𝑞̅𝑖
=

𝜕𝜑

𝜕𝑞𝑗

𝜕𝑞𝑗

𝜕𝑞̅𝑖
 

(15) 

For 𝑖 = (1, 2), 𝑗 = (1,2), and 𝑞𝑖 = (𝑥, 𝑦) ⇒ 

 

(∇𝜑)𝑖 = [
𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦
] 

 

Using the Einstein summation rule, equation (15) ⇒ 

 

𝜕𝜑

𝜕𝑞̅1
=

𝜕𝜑

𝜕𝑞1

𝜕𝑞1

𝜕𝑞̅1
+

𝜕𝜑

𝜕𝑞2

𝜕𝑞2

𝜕𝑞̅1
⇒

𝜕𝜑

𝜕𝑥̅
=

𝜕𝜑

𝜕𝑥

𝜕𝑥

𝜕𝑥̅
+

𝜕𝜑

𝜕𝑦

𝜕𝑦

𝜕𝑥̅
 

 

𝜕𝜑

𝜕𝑞̅2
=

𝜕𝜑

𝜕𝑞1

𝜕𝑞1

𝜕𝑞̅2
+

𝜕𝜑

𝜕𝑞2

𝜕𝑞2

𝜕𝑞̅2
⇒

𝜕𝜑

𝜕𝑦̅
=

𝜕𝜑

𝜕𝑥

𝜕𝑥

𝜕𝑦̅
+

𝜕𝜑

𝜕𝑦

𝜕𝑦

𝜕𝑦̅
 

(16) 

Equation (16) ⇒ 

[
𝜕𝜑

𝜕𝑥̅

𝜕𝜑

𝜕𝑦̅
] = (∇̅𝜑)𝑖 = [

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦
]

[
 
 
 
 
𝜕𝑥

𝜕𝑥̅

𝜕𝑥

𝜕𝑦̅
𝜕𝑦

𝜕𝑥̅

𝜕𝑦

𝜕𝑦̅]
 
 
 
 

= [
𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦
]𝐴𝑇 = (∇𝜑)𝑖𝐴

𝑇 

(17) 

where  

 ∇̅ is the gradient with respect to the (𝑥̅, 𝑦̅) variables 
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Equation (17) is the prototype of a transformation of the components of a covariant vector from 

(𝑥, 𝑦) to (𝑥̅, 𝑦̅) coordinates as shown in equation (17) 

 

𝑣𝑖̅ = 𝑣𝑖𝐴
𝑇 

(17) 

 

So, if the components of ∇𝜑 transform as a covariant vector, the bases must be one forms ⇒  

 

∇𝜑 =
𝜕𝜑

𝜕𝑥
𝑑𝑥 +

𝜕𝜑

𝜕𝑦
𝑑𝑦 

(18) 

 

The gradient (∇𝜑)𝑖 can be solved for in terms of (∇̅𝜑)𝑖 as shown in equation (19). 

 

(∇𝜑)𝑖 = (∇̅𝜑)𝑖𝐵
𝑇 

(19) 

 

Example 

 

𝐴 = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] 

 

For  

 

𝜑(𝑥, 𝑦) = 𝑥2 ⇒ 

 

∇𝜑(𝑥, 𝑦) = [2𝑥 0] 
 

(∇̅𝜑)𝑖 = (∇𝜑)𝑖𝐴
𝑇 = [2𝑥 0] [

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
]
𝑇

= [2𝑥 0] [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] 

 

= [2𝑥𝑐𝑜𝑠(𝜃) −2𝑥𝑠𝑖𝑛(𝜃)] 
(20) 

 

We can convert equation (20) to (𝑥̅, 𝑦̅) coordinates by using equation (2)  

 

𝑥 = 𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃) ⇒ 

 

∇̅𝜑 = [2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑐𝑜𝑠(𝜃) −2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑠𝑖𝑛(𝜃)] 
(21) 

 

To check equation (21), compute ∇̅𝜑 straight from equation (2) 

 

𝜑(𝑥̅, 𝑦̅) = (𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃))
2
⇒ 
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∇̅𝜑 = [2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑐𝑜𝑠(𝜃) −2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑠𝑖𝑛(𝜃)] 
(22) 

Equation (22) agrees with equation (21). 

 

Using equation (19), we can transform ∇̅𝜑 back to ∇𝜑. 

 

𝐵 = 𝐴−1 = [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] 

 

∇𝜑 = ∇̅𝜑𝐵𝑇

= [2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑐𝑜𝑠(𝜃) −2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑠𝑖𝑛(𝜃)] [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] ⇒ 

 

Computing (∇𝜑)𝑥 and (∇𝜑)𝑦 separately ⇒ 

 
(∇𝜑)𝑥 = [2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑐𝑜𝑠2(𝜃) + 2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑠𝑖𝑛2(𝜃)]

= 2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)] 
 
(∇𝜑)𝑦 = 2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃) − 2[𝑥̅𝑐𝑜𝑠(𝜃) − 𝑦̅𝑠𝑖𝑛(𝜃)]𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) = 0 

 

Using equation (2)⇒  

 
(∇𝜑)𝑥 = 2𝑥 ⇒ 

 

∇𝜑 = [2𝑥 0] 
(23) 

as is expected. 

 

Compute Gradient in Polar Coordinates 

 

The coordinate relations are 

 

𝑥 = 𝑟𝑐𝑜𝑠(𝜃) 

𝑦 = 𝑟𝑠𝑖𝑛(𝜃) 

(24) 

𝐴 = [

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟
𝜕𝑥

𝜕𝜃

𝜕𝑥

𝜕𝜃

] = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑟 𝑠𝑖𝑛(𝜃) 𝑟 𝑐𝑜𝑠(𝜃)
] 

(25) 

 

The general equation for a change of basis for one-forms is given by 

 

𝒖 = 𝑢̅𝑖𝑊̅ = 𝑢𝑖𝑊 

(26) 
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The conversion equations are shown below 

 

𝑊̅ = 𝐵𝑇𝑊 

(27) 

𝑢̅𝑖 = 𝑢𝑖𝐴
𝑇 

(28) 

Using equation (28) ⇒ 

 

(∇̅𝜑)𝑖 = (∇𝜑)𝑖𝐴
𝑇 = [

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦
] [

𝑐𝑜𝑠(𝜃) −𝑟𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑟 𝑐𝑜𝑠(𝜃)
]

= [
𝜕𝜑

𝜕𝑥
𝑐𝑜𝑠(𝜃) +

𝜕𝜑

𝜕𝑦
𝑠𝑖𝑛(𝜃) −

𝜕𝜑

𝜕𝑥
𝑟𝑠𝑖𝑛(𝜃) +

𝜕𝜑

𝜕𝑦
𝑟𝑐𝑜𝑠(𝜃)] 

(29) 

 

The coordinates in equation (29) can be converted to (𝑟, 𝜃) by using the chain rule as shown in 

equations (30). 

 
𝜕𝜑

𝜕𝑟
=

𝜕𝜑

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝜑

𝜕𝑦

𝜕𝑦

𝜕𝑟
=

𝜕𝜑

𝜕𝑥
𝑐𝑜𝑠(𝜃) +

𝜕𝜑

𝜕𝑦
𝑠𝑖𝑛(𝜃) 

 
𝜕𝜑

𝜕𝜃
=

𝜕𝜑

𝜕𝑥

𝜕𝑥

𝜕𝜃
+

𝜕𝜑

𝜕𝑦

𝜕𝑦

𝜕𝜃
= −

𝜕𝜑

𝜕𝑥
𝑟𝑠𝑖𝑛(𝜃) +

𝜕𝜑

𝜕𝑦
𝑟𝑐𝑜𝑠(𝜃) 

(30) 

 

Note: the 𝐴 matrix is applying the chain rule, so it’s automatically converting from (𝑥, 𝑦) to  
(𝑟, 𝜃) coordinates – in general (𝑥̅, 𝑦̅) coordinates. 

 

Using equation (27) ⇒ 

 

[𝑑𝑟
𝑑𝜃

] = 𝐵𝑇 [
𝑑𝑥
𝑑𝑦

] 

(31) 

Note: all the differentials are row vectors 

 

𝐵 = 𝐴−1 = [
𝑐𝑜𝑠(𝜃) −

𝑠𝑖𝑛(𝜃)

𝑟

𝑠𝑖𝑛(𝜃)
𝑐𝑜𝑠(𝜃)

𝑟

] ⇒ 
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[
𝑑𝑟
𝑑𝜃

] = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−
𝑠𝑖𝑛(𝜃)

𝑟

𝑐𝑜𝑠(𝜃)

𝑟

] [
𝑑𝑥
𝑑𝑦

] ⇒ 

 

𝑑𝑟 = 𝑐𝑜𝑠(𝜃)𝑑𝑥 + 𝑠𝑖𝑛(𝜃)𝑑𝑦 

𝑑𝜃 = −
𝑠𝑖𝑛(𝜃)

𝑟
𝑑𝑥 +

𝑐𝑜𝑠(𝜃)

𝑟
𝑑𝑦 

(32) 

 

Now write the basis vectors in equation (32) in terms of normalized basis vectors. Note: 𝑑𝑥 =
𝑑𝑥̂, and 𝑑𝑦 = 𝑑𝑦̂ 

 

 

𝑑𝑟 = |𝑑𝑟|𝑑𝑟̂ = |𝑐𝑜𝑠(𝜃)𝑑𝑥̂ + 𝑠𝑖𝑛(𝜃)𝑑𝑦̂|𝑑𝑟̂  ⇒ 

 

|𝑑𝑟| = √𝑑𝑟 ∙ 𝑑𝑟 = √𝑐𝑜𝑠2(𝜃) + 𝑠𝑖𝑛2(𝜃) = 1 ⇒ 

 

𝑑𝑟 = 𝑑𝑟̂ 

(33) 

𝑑𝜃 = |𝑑𝜃|𝑑𝜃 = |−
𝑠𝑖𝑛(𝜃)

𝑟
𝑑𝑥̂ +

𝑐𝑜𝑠(𝜃)

𝑟
𝑑𝑦̂| 𝑑𝜃 ⇒ 

 

|𝑑𝜃| = √𝑑𝜃 ∙ 𝑑𝜃 = √
1

𝑟2
(𝑠𝑖𝑛2(𝜃) + 𝑐𝑜𝑠2(𝜃)) =

1

𝑟
⇒ 

𝑑𝜃 =
1

𝑟
𝑑𝜃 ⇒ 

(34) 

Note: [
𝑑𝑥
𝑑𝑦

] are row vectors  

 

Putting the components and basis vectors into equation (26) ⇒ 

 

(∇̅𝜑)𝑖𝑊̅ = [
𝜕𝜑

𝜕𝑟

1

𝑟

𝜕𝜑

𝜕𝜃
] [

𝑑𝑟̂
𝑑𝜃

] = [
𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦
] [

𝑑𝑥̂
𝑑𝑦̂

] = (∇𝜑)𝑖𝑊 

(35) 

 

Equation (35) is the gradient of the polar system. 
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Gradient as a Vector in Polar Coordinates 

 

Convert the gradient from a one form basis to a vector basis ⇒ 

 

𝒖 = 𝑢̅𝑖𝑊̅ = 𝑢𝑖𝑊 

(26) 

 

For 𝒖 = 𝛁𝜑 ⇒ 

 

𝛁𝜑 = (∇̅𝜑)𝑖𝑊̅ = (∇𝜑)𝑖𝑊 

(36) 

 

Also, the equations for raising and lowering a vector and one form are given below - See2 

 

𝑢𝑖 = 𝑢𝑖𝐺 

𝑢𝑖 = 𝑢𝑖𝐺
−1  

(37) 

 

Now the basis vectors are the rows of both the 𝐸 and 𝑊 matrix, so  

 

𝐸 = 𝑊𝐺 

(38) 

𝑊 = 𝐸𝐺−1 

(39) 

𝑊̅ = 𝐵𝑇𝐼 = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−
𝑠𝑖𝑛(𝜃)

𝑟

𝑐𝑜𝑠(𝜃)

𝑟

] 

 

𝐸̅ = 𝐴𝐼 = 𝐴 

 

𝐺̅ = 𝐸̅𝐸̅𝑇 = 𝐴𝐴𝑇 = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑟𝑠𝑖𝑛(𝜃) 𝑟𝑐𝑜𝑠(𝜃)
] [

𝑐𝑜𝑠(𝜃) −𝑟𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑟𝑐𝑜𝑠(𝜃)
] = [

1 0
0 𝑟2] 

(40) 

 

𝐺̅−1 = 𝑊𝑊𝑇 = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−
𝑠𝑖𝑛(𝜃)

𝑟

𝑐𝑜𝑠(𝜃)

𝑟

] [
𝑐𝑜𝑠(𝜃) −

𝑠𝑖𝑛(𝜃)

𝑟

𝑠𝑖𝑛(𝜃)
𝑐𝑜𝑠(𝜃)

𝑟

] = [
1 0

0
1

𝑟2

] 

(41) 

 

 
2 Coordinates Summary p. 5-6 

https://www.metricmath.com/_files/ugd/55ccdb_90cb4675cf0048c5b96ef66368bf2e83.pdf
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𝐸̅ = 𝑊̅𝐺̅ = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−
𝑠𝑖𝑛(𝜃)

𝑟

𝑐𝑜𝑠(𝜃)

𝑟

] [
1 0
0 𝑟2] = [

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑟𝑠𝑖𝑛(𝜃) 𝑟𝑐𝑜𝑠(𝜃)
] 

(42) 

Equation (42) correctly transforms 𝑊̅ to 𝐸̅ 

 

Also 

 

𝐺̅ = 𝐴𝐺𝐴𝑇 

(43) 

𝐺̅−1 = 𝐵𝑇𝐺−1𝐵 

(44) 

 

The right side of equation (26) ⇒ 

 

𝑢𝑖𝑊 = 𝑢𝑖𝐸 ⇒ (∇𝜑)𝑖𝑊 = (∇𝜑)𝑖𝐸 

(45) 

 

In Cartesian Coordinates, 𝐸, 𝑊, 𝐺, and 𝐺−1 all equal the identity matrix 𝐼 ⇒ 

 

𝑢𝑖 = 𝑢𝑖  ⇒ 

 

Equation (45) ⇒ 

 

(∇𝜑)𝑖𝑑𝑥𝑖 = (∇𝜑)𝑖
𝜕

𝜕𝑥𝑖
= [

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦
] [

𝑒̂𝑥

𝑒̂𝑦
] 

(46) 

 

The left side of equation (26) ⇒ 

 

𝑢̅𝑖𝑊̅ = 𝑢̅𝑖𝐸̅ = 𝑢̅𝑖𝐺̅
−1𝐸̅ = (∇̅𝜑)𝑖𝐺̅

−1𝐸̅ = [
𝜕𝜑

𝜕𝑟

1

𝑟

𝜕𝜑

𝜕𝜃
] [

1 0

0
1

𝑟2

] [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑟𝑠𝑖𝑛(𝜃) 𝑟𝑐𝑜𝑠(𝜃)
]

[
 
 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦]
 
 
 

 

 

= [
𝜕𝜑

𝜕𝑟

1

𝑟3

𝜕𝜑

𝜕𝜃
] [

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑟𝑠𝑖𝑛(𝜃) 𝑟𝑐𝑜𝑠(𝜃)
]

[
 
 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦]
 
 
 

= [
𝜕𝜑

𝜕𝑟

1

𝑟3

𝜕𝜑

𝜕𝜃
]

[
 
 
 𝑐𝑜𝑠(𝜃)

𝜕

𝜕𝑥
+ 𝑠𝑖𝑛(𝜃)

𝜕

𝜕𝑦

−𝑟𝑠𝑖𝑛(𝜃)
𝜕

𝜕𝑥
+ 𝑟𝑐𝑜𝑠(𝜃)]

 
 
 

 

= [
𝜕𝜑

𝜕𝑟

1

𝑟3

𝜕𝜑

𝜕𝜃
] [

𝜕

𝜕𝑟

𝑟
𝜕

𝜕𝜃

] = [
𝜕𝜑

𝜕𝑟

1

𝑟2

𝜕𝜑

𝜕𝜃
] [

𝑒̂𝑟

𝑒̂𝜃
] 

(47) 
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Equating equation (47) with equation (46) ⇒ 

 

(∇̅𝜑)𝑖
𝜕

𝜕𝑥̅𝑖
= [

𝜕𝜑

𝜕𝑟

1

𝑟2

𝜕𝜑

𝜕𝜃
] [

𝑒̂𝑟

𝑒̂𝜃
] = [

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦
] [

𝑒̂𝑥

𝑒̂𝑦
] = (∇𝜑)𝑖

𝜕

𝜕𝑥𝑖
= [

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦
] [

𝑒̂𝑥

𝑒̂𝑦
] 

(48) 

Note: (∇𝜑)𝑖 = (𝑑𝜑)𝑖 

 

Directional Derivative 

 

The derivation of the directional derivative will follow – see 3.  Consider a curve 𝐶(𝜆) on a 

manifold and a point 𝑃 on 𝐶(𝜆). Define 𝜆 as a parameter along the curve, set 𝐶(0) = 𝑃 and let 𝑓 

be a function. 

 

Define a vector on a two-dimensional surface. 

 

𝒗 = 𝑣𝑥
𝜕

𝜕𝑥
+ 𝑣𝑦

𝜕

𝜕𝑦
= [𝑣𝑥 𝑣𝑦] 

(49) 

 

Define a section of curve that intersects 𝒗 as shown in equation (50) ⇒ 

 

𝐶(𝜆) = 𝑣𝑥𝜆
𝜕

𝜕𝑥
+ 𝑣𝑦𝜆

𝜕

𝜕𝑦
= [𝑣𝑥𝜆 𝑣𝑦𝜆] = [𝑥 𝑦] 

(50) 

where 

 𝑥 = 𝜆𝑣𝑥  

 𝑦 = 𝜆𝑣𝑦  

 

Given the above parameters, 

 

𝐶(0) = [0 0] and 

 

𝐶(1) = [𝑣𝑥 𝑣𝑦] 
 

Treat 𝑓 as a function of 𝑛 variables – 𝑛 = 2 in the two-dimensional case 

 

𝑓(𝐶(𝜆)) = 𝑓([𝑣𝑥𝜆 𝑣𝑦𝜆]) = 𝑓(𝑥, 𝑦) 

 

Expand 𝑓(𝐶(𝜆)) in a two-dimensional Taylor Series to first order ⇒ 

 

𝑓(𝐶(𝜆)) = 𝑓(𝑥, 𝑦) = 𝑓(0, 0) + 𝑥
𝜕𝑓

𝜕𝑥
+ 𝑦

𝜕𝑓

𝜕𝑦
+ ⋯ = 𝑓(0, 0) + 𝑣𝑥𝜆

𝜕𝑓

𝜕𝑥
+ 𝑣𝑦𝜆

𝜕𝑓

𝜕𝑦
 

(51) 

 
3 Sadri Hassani, Foundations of Mathematical Physics, Allyn and Bacon, 1991, pp. 257-258 
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Now, find the derivative at point 𝑃 along 𝐶(𝜆) through vector 𝒗. 

 

𝑑𝑓(𝐶(𝜆))

𝑑𝜆
= lim

𝜆→0

𝑓(0, 0) + 𝑣𝑥𝜆
𝜕𝑓
𝜕𝑥 + 𝑣𝑦𝜆

𝜕𝑓
𝜕𝑦

𝜆
 

(52) 

Because, 

 

lim
𝜆→0

𝜆

𝜆
= lim

𝜆→0

1

1
= 1 

 

Equation (52)⇒ 

 

𝑑𝑓(𝐶(𝜆))

𝑑𝜆
= 𝑣𝑥

𝜕𝑓

𝜕𝑥
+ 𝑣𝑦

𝜕𝑓

𝜕𝑦
= (𝑣𝑥

𝜕

𝜕𝑥
+ 𝑣𝑦

𝜕

𝜕𝑦
) 𝑓 = 𝑣𝑖

𝜕𝑓

𝜕𝑥𝑖
 

(53) 

 

Equation (53) can be converted using the metric to 𝑣𝑖(𝑑𝑓)𝑖  ⇒ 

 

𝐷𝑣𝑓 = 𝛁𝑓 ∙ 𝒗 = 𝑣𝑖
𝜕𝑓

𝜕𝑥𝑖
= 𝑣𝑖(𝑑𝑓)𝑖 

(54) 

 

Compute Transformation of a Partial Derivative – 𝜕𝑣 𝑖 𝜕𝑞𝑖⁄  – using Standard 
Index Equations 

 

The derivation of the coordinate transform of a partial derivative using standard index equations 

will follow - see.4 

 

 

𝑣̅𝑖 =
𝜕𝑞̅𝑖

𝜕𝑞𝑗
𝑣𝑗  

(55) 

 

𝜕𝑣̅𝑖

𝜕𝑞̅𝑘
=

𝜕

𝜕𝑞̅𝑘
(
𝜕𝑞̅𝑖

𝜕𝑞𝑗
𝑣𝑗) 

(56) 

 

The right side of equation (56) takes a derivative of the expression in parentheses with respect to 

𝑞̅𝑘. This can be changed to take the derivative with respect to 𝑞𝑘 by using equation (57). 

 

 
4 David McMahon, Relativity Demystified, McGraw-Hill, 2006, pp. 65 - 66 
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𝜕𝑞𝑙

𝜕𝑞𝑚
= 𝛿𝑚

𝑙 = {
1, 𝑙 = 𝑚
0, 𝑙 ≠ 𝑚

 

(57) 

Equation (57) can be rewritten as  

 

𝜕𝑞𝑙

𝜕𝑞𝑙
= 1 

(58) 

Using equation (58) in equation (56) ⇒ 

 

𝜕𝑣̅𝑖

𝜕𝑞̅𝑘
=

𝜕

𝜕𝑞̅𝑘
(
𝜕𝑞𝑙

𝜕𝑞𝑙

𝜕𝑞̅𝑖

𝜕𝑞𝑗
𝑣𝑗) =

𝜕𝑞𝑙

𝜕𝑞̅𝑘

𝜕

𝜕𝑞𝑙
(
𝜕𝑞̅𝑖

𝜕𝑞𝑗
𝑣𝑗) =

𝜕𝑞𝑙

𝜕𝑞̅𝑘
[

𝜕2𝑞̅𝑖

𝜕𝑞𝑙𝜕𝑞𝑗
𝑣𝑗 +

𝜕𝑞̅𝑖

𝜕𝑞𝑗

𝜕𝑣𝑗

𝜕𝑞𝑙
] 

 

=
𝜕𝑞𝑙

𝜕𝑞̅𝑘

𝜕2𝑞̅𝑖

𝜕𝑞𝑙𝜕𝑞𝑗
𝑣𝑗 +

𝜕𝑞𝑙

𝜕𝑞̅𝑘

𝜕𝑞̅𝑖

𝜕𝑞𝑗

𝜕𝑣𝑗

𝜕𝑞𝑙
 

(59) 

 

Equation (59) is the standard equation for the transformation of a partial derivative. 

Note: the partial derivative is not a tensor. To be a tensor, the equation would have to be of the 

form. 

 

𝜕𝑣̅𝑖

𝜕𝑞̅𝑘
= 𝑇

𝜕𝑣𝑗

𝜕𝑞𝑙
 

(60) 

 

where  

𝑇 =
𝜕𝑞𝑙

𝜕𝑞̅𝑘

𝜕𝑞̅𝑖

𝜕𝑞𝑗
 

 

Compute Transformation of a Partial Derivative – 𝜕𝑣 𝑖 𝜕𝑞𝑖⁄  – Using Matrix 
Approach 

 

The relations in equation (61) are used to convert equation (59) using the matrix approach–⇒ 

 

𝐴 =
𝜕𝒒

𝜕𝒒̅
=

𝜕𝑞𝑙

𝜕𝑞̅𝑘
 

 

𝐵 =
𝜕𝒒̅

𝜕𝒒
=

𝜕𝑞̅𝑖

𝜕𝑞𝑗
 

 

𝑣̅𝑖 = 𝑣𝑖𝐵 

(61) 
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Using the expression for the 𝐴 matrix from equations (61) see 5, equation (59) ⇒ 

 

𝜕𝑣̅𝑖

𝜕𝑞̅𝑘
=

𝜕

𝜕𝑞̅𝑘
(
𝜕𝑞𝑙

𝜕𝑞𝑙

𝜕𝑞̅𝑖

𝜕𝑞𝑗
𝑣𝑗) =

𝜕𝑞𝑙

𝜕𝑞̅𝑘

𝜕

𝜕𝑞𝑙
(
𝜕𝑞̅𝑖

𝜕𝑞𝑗
𝑣𝑗) ⇒ 

 

(62) 

Now finish putting equation (62) into matrix format. 

 

𝑣̅𝑖 = 𝑣𝑗
𝜕𝑞̅𝑖

𝜕𝑞𝑗
 ⇒ 𝑣̅𝑖 = 𝑣𝑖𝐵 

 

𝜕𝑣̅𝑖

𝜕𝑞̅𝑘
=

𝜕

𝜕𝑞̅𝑘

[𝑣𝑖𝐵] =
𝜕𝑞𝑙

𝜕𝑞̅𝑘
[
𝜕𝑣𝑖

𝜕𝑞𝑙
𝐵 + 𝑣𝑖

𝜕𝐵

𝜕𝑞𝑙
] 

(63) 

 

But in this case 𝑘 is a fixed index, so  

 

𝜕𝑣̅𝑖

𝜕𝑞̅𝑘
=

𝜕𝑞𝑙

𝜕𝑞̅𝑘
[
𝜕𝑣𝑖

𝜕𝑞𝑙
𝐵 + 𝑣𝑖

𝜕𝐵

𝜕𝑞𝑙
] =

𝜕𝑞1

𝜕𝑞̅𝑘
[
𝜕𝑣𝑖

𝜕𝑞1
𝐵 + 𝑣𝑖

𝜕𝐵

𝜕𝑞1
] + ⋯+

𝜕𝑞𝑛

𝜕𝑞̅𝑘
[
𝜕𝑣𝑖

𝜕𝑞𝑛
𝐵 + 𝑣𝑖

𝜕𝐵

𝜕𝑞𝑛
] 

(64) 

The 𝐴 matrix is defined below. 

 

𝐴 = [
𝜕𝒒

𝜕𝒒̅
] =

[
 
 
 
 
 
𝜕𝑞1

𝜕𝑞̅1 ⋯
𝜕𝑞𝑛

𝜕𝑞̅1

⋮ ⋱ ⋮
𝜕𝑞1

𝜕𝑞̅𝑛 ⋯
𝜕𝑞𝑛

𝜕𝑞̅𝑛]
 
 
 
 
 

 

(65) 

 

Equations (65) is the definition of differentiating a vector 𝒒 with respect to 𝒒̅. 

 

Notice, in equation (65), that each row of the matrix is the derivative of the vector with respect to 

a single variable 𝑞̅𝑘. Using this same logic ⇒ 

 

𝜕𝐵

𝜕𝑞̅𝑘
=

[
 
 
 
 
𝜕𝐵

𝜕𝑞̅1

⋮
𝜕𝐵

𝜕𝑞̅𝑛]
 
 
 
 

 

(66) 

 

Picture equation (66) as a vector of matrices 

 
5 CoordinatesSummary-pages-8-11 

https://www.metricmath.com/_files/ugd/55ccdb_90cb4675cf0048c5b96ef66368bf2e83.pdf
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𝑣𝑖
𝜕𝐵

𝜕𝑞̅𝑘
=

[
 
 
 
 𝑣𝑖

𝜕𝐵

𝜕𝑞̅1

⋮

𝑣𝑖
𝜕𝐵

𝜕𝑞̅𝑛]
 
 
 
 

 

(67) 

 

𝑣 𝑖 𝜕𝐵

𝜕𝑞̅𝑗
≡ a vector 

 

Picture equation (67) as a vector of vectors or a matrix. It could also be pictured as a set of 

equations where each equation uses a derivative with respect to a fixed index - 𝑞̅𝑝 as was used in 

previous writeups. 

 

The 𝐴 matrix writes the primed basis vectors as a function of the non-primed basis vectors. 

Similarly, the 𝐵 matrix writes the primed vector components in terms of the non-primed vector 

components. The coordinate relations can map between the primed and non-primed coordinate 

variables. 

 

Equation (64) can be put into a form using the 𝐴 matrix as shown in equation (68). 

 

First declare the vector 𝒖 

 

𝒖 = [[
𝜕𝑣𝑖

𝜕𝑞1
𝐵 + 𝑣𝑖

𝜕𝐵

𝜕𝑞1
] [

𝜕𝑣𝑖

𝜕𝑞2
𝐵 + 𝑣𝑖

𝜕𝐵

𝜕𝑞2
] ⋯ [

𝜕𝑣𝑖

𝜕𝑞𝑛
𝐵 + 𝑣𝑖

𝜕𝐵

𝜕𝑞𝑛
]] 

 

[
𝜕𝑣̅𝑖

𝜕𝑞̅𝑘
]

𝑇

= 𝐴 ∙ 𝒖𝑻  ⇒
𝜕𝑣̅𝑖

𝜕𝑞̅𝑘
= [𝐴 ∙ 𝒖𝑻]𝑇 = 𝒖 ∙ 𝐴𝑇 

 

= [
𝜕𝑣𝑖

𝜕𝑞1
𝐵 + 𝑣𝑖

𝜕𝐵

𝜕𝑞1
] 𝐴𝑘1 + ⋯+ [

𝜕𝑣𝑖

𝜕𝑞𝑛
𝐵 + 𝑣𝑖

𝜕𝐵

𝜕𝑞𝑛
]𝐴𝑘𝑛 

(68) 

In equation (68), 𝒖 is a block vector whose elements are vectors. The ‘∙’ is used to indicate that 

it’s a block vector operation as indicated in equation (68). The indices are reversed because 

[𝐴𝑇]𝑖𝑗 = 𝐴𝑗𝑖 

 

Parabolic Coordinates 

 

Now we will see an example of how partial derivatives transform. We pick parabolic coordinates 

because the derivatives with respect to the basis vectors do not vanish. The coordinate equations 

are given by equation (69). 

 

𝑥 = 𝜎𝜏 
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𝑦 =
1

2
(𝜏2 − 𝜎2) 

(69) 

 

Now the 𝐴 matrix is given by equations (70). 

 
𝜕

𝜕𝜎
=

𝜕𝑥

𝜕𝜎

𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝜎

𝜕

𝜕𝑦
= 𝜏

𝜕

𝜕𝑥
− 𝜎

𝜕

𝜕𝑦
 

 
𝜕

𝜕𝜏
=

𝜕𝑥

𝜕𝜏

𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝜏

𝜕

𝜕𝑦
= 𝜎

𝜕

𝜕𝑥
+ 𝜏

𝜕

𝜕𝑦
 

(70) 

 

Equation (70) ⇒ 

 

𝐴 = [
𝜏 −𝜎
𝜎 𝜏

] 

(71) 

where the basis vectors are the rows of 𝐴. 

 𝝈 = [𝜏 −𝜎] 

 𝝉 = [𝜎 𝜏] 

Inverse Parabolic Coordinates 

 

Using Maxima6 to solve equations (69) for 𝜎 and 𝜏 ⇒ 4 roots 

 

1.  

𝜎 = −√√𝑥2 + 𝑦2 − 𝑦  

 

𝜏 = −
√√𝑥2 + 𝑦2 − 𝑦(√𝑥2 + 𝑦2 + 𝑦)

𝑥
 

(72) 

 

 

2.  

𝜎 = √√𝑥2 + 𝑦2 − 𝑦 

 

 
6 https://maxima - computer algebra system 

https://maxima.sourceforge.io/
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𝜏 =
√√𝑥2 + 𝑦2 − 𝑦(√𝑥2 + 𝑦2) + 𝑦

𝑥
 

(73) 

3.  

𝜎 = −√−√𝑥2 + 𝑦2 − 𝑦 

 

𝜏 =
√−√𝑥2 + 𝑦2 − 𝑦(√𝑥2 + 𝑦2 − 𝑦)

𝑥
 

(74) 

4.  

 

𝜎 = √−√𝑥2 + 𝑦2 − 𝑦 

 

𝜏 = −
√−√𝑥2 + 𝑦2 − 𝑦(√𝑥2 + 𝑦2 − 𝑦)

𝑥
 

(75) 

Figure 5 shows a parabolic coordinate grid. 

 
Figure 5 

 

Several things in Figure 5 need to be discussed. First the range of both 𝜎 and 𝜏 is [−5, 5]. A 

curve of constant (−𝜎) or (−𝜏) is the same curve but progresses in the opposite direction as 

curves of constant 𝜎 or 𝜏. The grid can’t be used in the same way an 𝑥𝑦 grid is used to locate 

unique points. For example, the 𝜎 = 0.167 intersects 𝜏 = 2.78 in two places. The grid lines do 
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give the correct direction of the basis vectors. The basis vectors (scaled) are shown at point 
(𝜎 = 5, 𝜏 = 2.78) in Figure 5. The 𝝈 basis vector points along the constant 𝜏 grid line in the 

positive direction. The 𝝉 basis vector points along the constant 𝜎 grid line in the positive 

direction. 
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Compute 𝜕𝑣̅ 𝑖 𝜕𝑞𝑖⁄  in Parabolic Coordinates 

 

It’s easier to use (𝜎, 𝜏) coordinates for the computation. 

 

𝐵 = 𝐴−1 =
1

𝜏2 + 𝜎2
[

𝜏 𝜎
−𝜎 𝜏

] 

(76) 

 

𝜕𝐵

𝜕𝜎
=

𝜕

𝜕𝜎
((

1

𝜏2 + 𝜎2
) [

𝜏 𝜎
−𝜎 𝜏

]) =
1

(𝜏2 + 𝜎2)2
[

−2𝜎𝜏 𝜏2 − 𝜎2

−(𝜏2 − 𝜎2) −2𝜎𝜏
] 

(77) 

 

𝜕𝐵

𝜕𝜏
=

𝜕

𝜕𝜏
((

1

𝜏2 + 𝜎2
) [

𝜏 𝜎
−𝜎 𝜏

]) =
1

(𝜏2 + 𝜎2)2
[
−(𝜏2 − 𝜎2) −2𝜏𝜎

2𝜏𝜎 −(𝜏2 − 𝜎2)
] 

(78) 

Compute Vector with Respect to 𝝈 

 

Plugging (77) into equation (65) 

 

𝜕𝑣̅𝑖

𝜕𝜎
=

𝜕𝑣𝑖

𝜕𝜎

1

(𝜏2 + 𝜎2)
[

𝜏 𝜎
−𝜎 𝜏

] +
𝑣𝑖

(𝜏2 + 𝜎2)2
[

−2𝜎𝜏 𝜏2 − 𝜎2

−(𝜏2 − 𝜎2) −2𝜎𝜏
] 

(79) 

 

Define a vector field using Cartesian basis vectors with (𝜎, 𝜏) coordinates. Follow the numbered 

steps below at each field point to be clear as to what this means ⇒ 

 

1.) Start out picking specific (𝜎, 𝜏) coordinate values 

2.) Use coordinate relations – equations (69) – to convert the (𝜎, 𝜏) coordinates to (𝑥, 𝑦) 
coordinates 

3.) The (𝜎, 𝜏) and (𝑥, 𝑦) coordinates refer to the same geometric point 

4.) 𝜎 and 𝜏 are numbers, so use these numbers to define a vector field using the (𝑥, 𝑦) basis 

vectors 𝑒𝑥 and 𝑒𝑦. 

5.) The 𝐴 and 𝐵 matrix are formed using the same (𝜎, 𝜏) numbers. 

 

𝑣𝑖 = 𝜎𝒆𝒙 + 𝜏𝒆𝒚 = [𝜎 𝜏] 

(80) 
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First Compute the derivative in the (𝒙, 𝒚) system and putting into equation (79) 

 

𝜕𝑣𝑖

𝜕𝜎
= [1 0] 

(81) 

Putting equation (81) into equation (79) ⇒ 

 

𝜕𝑣̅𝑖

𝜕𝜎
=

[1 0]

(𝜏2 + 𝜎2)
[

𝜏 𝜎
−𝜎 𝜏

] +
[𝜎 𝜏]

(𝜏2 + 𝜎2)2
[

−2𝜎𝜏 𝜏2 − 𝜎2

−(𝜏2 − 𝜎2) −2𝜎𝜏
] = 

 

=
[𝜏 𝜎]

(𝜏2 + 𝜎2)
+

[−2𝜎2𝜏 − 𝜏3 + 𝜏𝜎2 𝜎𝜏2 − 𝜎3 − 2𝜎𝜏2]

(𝜏2 + 𝜎2)2
 

(82) 

Multiply the left side of equation (82) by (𝜏2 + 𝜎2) to give a common denominator of 
(𝜏2 + 𝜎2)2  ⇒ 

 

𝜕𝑣̅𝑖

𝜕𝜎
=

[𝜏3 + 𝜏𝜎2 𝜎𝜏2 + 𝜎3]

(𝜏2 + 𝜎2)2
+

[−2𝜎2𝜏 − 𝜏3 + 𝜏𝜎2 𝜎𝜏2 − 𝜎3 − 2𝜎𝜏2]

(𝜏2 + 𝜎2)2
 

 

=
[𝜏3 + 𝜏𝜎2 − 𝜏𝜎2 − 𝜏3 𝜎𝜏2 + 𝜎3 − 𝜎𝜏2 − 𝜎3]

(𝜏2 + 𝜎2)2
 

 

= [0 0] 
(83) 

 

Now transform the vector to the (𝝈, 𝝉) system first, and then taking the derivative as a 

comparison. 

 

Using 𝐵 from equation (76) ⇒ 

 

𝑣̅𝑖 = 𝑣𝑖𝐵 =
[𝜎 𝜏]

𝜏2 + 𝜎2
[

𝜏 𝜎
−𝜎 𝜏

] =
[𝜎𝜏 − 𝜏𝜎 𝜎2 + 𝜏2]

𝜏2 + 𝜎2
= [0 1] 

(84) 

 

𝜕𝑣̅𝑖

𝜕𝜎
=

𝜕[0 1]

𝜕𝜎
= [0 0] 

(85) 

 

Equation (85) agrees with equation (83) as expected. 
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Compute Vector with Respect to 𝝉 

 

𝜕𝑣𝑖

𝜕𝜏
=

𝜕[𝜎 𝜏]

𝜕𝜏
= [0 1] 

(86) 

 

Putting equations (80), (78), and (76) into equation (65) ⇒ 

 

𝜕𝑣̅𝑖

𝜕𝜏
=

[0 1]

(𝜏2 + 𝜎2)
[

𝜏 𝜎
−𝜎 𝜏

] +
[𝜎 𝜏]

(𝜏2 + 𝜎2)2
[
−(𝜏2 − 𝜎2) −2𝜏𝜎

2𝜏𝜎 −(𝜏2 − 𝜎2)
] = 

 
[−𝜎 𝜏]

(𝜏2 + 𝜎2)
+

[−𝜎(𝜏2 − 𝜎2) + 2𝜏2𝜎 −2𝜏𝜎2 − 𝜏(𝜏2 − 𝜎2)]

(𝜏2 + 𝜎2)2
 

(87) 

 

Multiplying the left side of equation (87) by (𝜏2 + 𝜎2) to get a common  

denominator of (𝜏2 + 𝜎2)2  ⇒ 

 
[−𝜎𝜏2 − 𝜎3 𝜏3 + 𝜏𝜎2]

(𝜏2 + 𝜎2)2
+

[−𝜎𝜏2 + 𝜎3 + 2𝜏2𝜎 −2𝜏𝜎2 − 𝜏3 + 𝜏𝜎2]

(𝜏2 + 𝜎2)2
= 

 
[−𝜎𝜏2 − 𝜎3 − 𝜎𝜏2 + 𝜎3 + 2𝜏2𝜎 𝜏3 + 𝜏𝜎2 − 2𝜏𝜎2 − 𝜏3 + 𝜏𝜎2]

(𝜏2 + 𝜎2)2
= [0 0] 

(88) 

 

Now transform 𝑣𝑖  to 𝑣̅𝑖, and then take the derivative. 

 

Using 𝐵 from equation (76) ⇒ 

 

𝑣̅𝑖 = 𝑣𝑖𝐵 =
[𝜎 𝜏]

𝜏2 + 𝜎2
[

𝜏 𝜎
−𝜎 𝜏

] =
[𝜎𝜏 − 𝜏𝜎 𝜎2 + 𝜏2]

𝜏2 + 𝜎2
= [0 1] ⇒ 

 

𝜕𝑣̅𝑖

𝜕𝜏
=

𝜕[0 1]

𝜕𝜏
= [0 0] 

(89) 

 

Equation (89) agrees with equation (88) as expected. 

 
 

 


