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Introduction

Equation (1) shows the definition for the Christoffel of the Second Kind in index form.

aei
Oqu = Filfek

(1)
Equation (2) shows the matrix form for equation (1) from a previous writeup.*
0E,
W = FpEn

)
where

E,, are the basis vectors as row vectors

Equation (2) is valid in any coordinate system E,, with coordinates n and p. Note: n and p refer to the
same coordinate system with different indices. In this write up, there will be a transformation
involving multiple coordinate systems, so equation (2) includes the subscript n to keep track of the
different coordinate systems. As will be discussed later in this write-up, the A and B matrix will be
defined using subscripts that indicate the coordinates they are transforming between to make it easier to
keep track of the various coordinate systems.

Use equation (3) to solve for T},
Wy = (Ep)™' = (ExD)" =
M/nT — Erzl =

©)

Using equation (3), equation (2) can be solved for I, =

1 Christoffel Symbols in Matrix Form
2 Coordinates Summary
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T = dgp " OgP W
(4)
Note: that T}, in index form is I,
Equation (4) is a general formula because the index p can vary. To see this, consider the
derivative of one vector with respect to another as shown in equation (5).
oul ou™
oul |ovt avt
L P ou™
avt av™t
()
Now apply this same pattern to taking the derivative of a matrix with respect to a vector as
shown in equation (6).
L
oE, |94
— =]
20" |0k,
aqn
(6)
Equation (6) is a column vector where each element is a matrix.
Putting equation (2) in this format =
o, Fl‘En]
99" |r,E,
(7)
Using equation (3) to solve for I, =
0E,
—Wr
M E, W, F‘l oE, aqt ™"
. = : = — WT = .
T agr " .
FnEnM/n Iy aEn T
agn
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Transformation of Christoffel Symbols of the Second Kind in Matrix Form

Start with the coordinate transform definition in equation (9).

E = Eﬁ = AEn = AﬁnEn
(9)
where
E; are the basis vectors in the primed coordinate system

oqt aq"
aq aqn 6q1 6q1

A= [—_] = — = : . : = AT_lTl
aq aq" aql aqn

Note that we are putting the bar over the indices - g” and T}; to describe the objects in the primed
coordinate system. This notation emphasizes that I'; and I, are the same mathematical object in
different coordinate systems. Note: saying something is the same mathematical object does not
mean it necessarily transforms like a tensor. Also Note, the upper index represents the column
index while the lower index represents the row index.

Now take the derivative of equation (9) with respect to gP.

0E; 0q' 0(Az,E,) 0q' [0An, 0E1 0Ann aqt 0E
GEn=oF=275 = 31| =55 E+t 7545
aq? dqP 0dq! dqP | aqt dq' aqP oqP dq'
(10)
Notice that there is the following simplification in equation (10) using the chain rule:
9q' 04y, _ 0Any,
dqP dq'  0qP
We could use equation (10) without the simplification if it better suites the situation.
From Coordinate Summary?®
W =Wz = [W'B]" = B'"W = BjzW, = Bz, W, =
(11)

3 Coordinates Summary
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where

6qT aqﬁ
aa 6q1 6q1
aq i n

aq aq

aq" aqr

W, is a matrix of the unprimed reciprocal basis vectors as row vectors.

W, can also be thought of as an arbitrary row - n*row of the matrix W and then equation
(11) implies Einstein’s summation convention as shown below.

By, [Wi]+ -+ 4B, [W,]
BanW, = -
Bz [Wil+ - BppWil

W, is the nt" row vector of W, so B, W, is a matrix.

Multiplying both sides of equation (10) by WT and using equation (11) =

r BT =1, = 24 g 1 0 g OF g OA pyyrp 04 4 OF
PRT P agp dq® " dq' " dqP dqP " g
= 04 B + aqlA ok WTB = 04 B + aqlAFEWTB = 04 B + aqlAFB
~ dqP dqP " dq! ~ dqP agr -t ~ dqP agr
0A5 aq
= g5 Brnt 55 AmnliBun
(12)
Equation (12) is the transformation equation for a Christoffel Symbol of the Second Kind in
matrix form. Applying the same pattern as in equation (8), equation (12) =
0Ax, aq
ry a—qIBnﬁ Aﬁna_qIFIBnﬁ
I 0Ann aq
aqn nn AﬁnWFanﬁ
(13)



Transformation of Christoffel Symbols in Index Form

Now, derive the transformation equations in index form This discussion follows the approach
used in.

Equation (14) shows the Christoffel of the Second Kind in the primed coordinate system using
index notation.

aq]: - Ffr(je}
(14)
where
aqg™m
efz aqf m
From the chain rule
0 _aql 0 R
dq’ 0q’dq
de; 0 (aqm )_aql 0 (6qm )
dq7 0q’\aq’ m) = 0ql 0q' \ 0q* m
aql azqm aqmaem aql azqm aqlaqm
=—|z=7emt+ 5= =—————e,+——=0}e,
0q’ |0qtdqt 2qt dq! dq’ 0q'0q" dq) dq*
(15)

Interchange m and n in the second term of equation (15) so that the basis vectors e, have the
same index.

alaZm alan alaZm alan
q_ 0°q e + 999 g (090747 | 09 047 ),
0q’ 0q'0q dq’ oq° dq’ 0q'0q" * 0q’ 9q°
(16)
Setting equation (14) equal to equation (16) =
3 _ aqm aql azqm aqlaqn
k o, 1k —
fjern =Tij 5 % em = [5611‘661?661’ 9q7 oqt i | em
(17)

Equation (17) =

4 David McMahon, Relativity Demystified, McGraw-Hill, 2006, pp. 68



F_I_(—aqmz aql azqm aql aqnl—‘mﬁ
Y aqk g7 dq'dq' ~ aq7 aqt ™

R _ aq* aq' 0%q™ aq* 9q'0q" .,
17 9qmaql 0q'dqt  dqmaql aqt ™

(18)
Equation (18) is the equation of how the Christoffel Symbol of the Second Kind transforms
under a coordinate change. The transformation rule for a 37¢ order tensor is given by equation
(29).

(19)

The second part of equation (18) gives the correct form of a tensor transformation, but the first
part does not; therefore, I} does not transform as a tensor.

Note: we can use the same simplification — using the chain rule - in equation (19) that was done
in equation (10).

aql azqm B azqm

dq’ 0qioqt  9q'oq’

(20)
Then equation (18) becomes
F}_{ _ aqk azqm aqk aql aqn o
77 9gmaqtaq’  dqmaql agt ™

(21)

Equivalence of the Matrix Form with the Index Form

To show that the matrix form of the equations is the same as the index form, try to convert the
matrix form to the index form and see if the index versions of the equations are the same. Start
with the first part of equation (12) =

aq’

AU aq*

(22)
From the definition in equation (4), the upper index in (22) changes with column and the lower
index changes with row. Convert the first term in equation (12) =

04y d%*q) aA]
dqP  dq'dqP laqP 5
(23)



oq*

B, =

] aqj
(24)
Using the definition of matrix multiplication =
04 o _ 04w, _ 0%" ¢’
ag?~  9qP ' dq'qP g~
(25)
Simplify the second part of equation (12) =
aq aq"
ﬁl—‘l = ﬁl—‘il =
aq aqt .
A—T,B=A——T)B
agP dqP ¢
(26)
Let
aq
Cij ﬁri]z
(27)
Using equation (27) in equation (26) =
CB = Clelj =
aqkaqt _ aq’
ACB = Aik[CB]kj = Aikamij = 9qt aqP I?llaqm
(28)
Putting equations (28) and (25) into equation (12) =
- 0Ap aq 0%q* 0q7 o0q*oqt _ 0q’
_ J _ nn 3 _ 1t _ I
o = Tip = gp Bun + ggu AmiBun = 502 5q% * 3q7ag7 4 g
_ aZ_qk_ aq’ N aq’ 6ql_6q’f .
dq'qP dg* ~ dqmaqP dq*
(29)

The terms of the second term in equation (29) have been rearranged so it can be more easily
compared to equation (21). The Einstein summation convention correctly maps the terms.
Equation (29) is the index version generated from the matrix version of the equations. Now
compare equation (29) to equation (21). Table 1 shows the mappings of the two versions of the
equations.



Matrix Version Index Version

First Term i
i azqk dq’ I_ dak 92g™m
] q q
I — P agk rk —

ﬂT T% g™ aqTfaq%
l aqjl aq' ag* i X

J k
Fiﬁ_)aqmaqﬁ aqi K I —

A i N A

Second Term

Table 1

The indices in Table 1 map the same way for each version, so the matrix and index versions of
the equations are equivalent. Equation (29) can give the same form as equation (18) if we plug
equation (20) into it.

Transformation Example

Figure 1 shows a block diagram for this example.

Polar Based

Cartesian Polar Coordinates
Coordinates »| Coordinates > r=+F
0=+0

Figure 1

In this example, we do two calculations for the transformation of the Christoffel Symbols of the
Second Kind. One from cartesian coordinates to polar coordinates and then polar to the polar
based coordinate system using equation (2). The second one directly from polar to the polar
based coordinate system using equation (12). Both computations get the same result as expected.



n=(xy)
n=(r0)
n=(0)

Cartesian to Polar

Start by going from cartesian to polar — using the notation of equations (22) and (24) =
cos(8) sin(0)

Apn =

" |l=rsin(@) rcos(6)
(30)

sin(8)

cos(8) — "
cos(8)

sin(8)
(31)

(32)

0E; _0Amn _ 0 [ cos(8)  sin(0) ]__[ 0 0
or  or  orl-rsin(@) rcos(8)] |-sin(8) cos(6)

(33)
Now use equation (12)

t=lo o
5=lo o

04y aq" 04y 0x dy 0A5
[ = %Bnﬁ + _AﬁnFanﬁ = a—;mBnﬁ + _AﬁanBnﬁ + _AﬁnFanﬁ = a_:n

or or or By



sin(0
0 cos(8) — ©)
— T
~ |—sin(6) cos(@)] cos(6)
[0 O]
= 1
O —
L r
(34)
Equation (34) gives the correct result.
_ 04, aq' 04, dx dy _ 0Am,
Ty = g Bun + 5 Aunl' 1B = —55" B + 55 Amnl'xBum + 55 Amnl'yBun = — 5 Bu
sin(0)
_i[ cos(8) sin(6) 1 cos(6)
90 l-rsin(@) rcos(®)]| cos(8)
sin(0)
[ sin(8)
_ [ —sin(8) cos(8) cos(6) - T _ [ 0 1]
—rcos(0) -rsin(6 cos(0) | r
Q O ey 2@ |71
(35)
Equation (35) gives the correct result.
Polar Based Transform
Equation (36) gives the equations for a polar based coordinate system.
r=+F
6=+0
(36)
Equation (37) show the coordinate transform equations from polar to the (7 §) coordinate
system.
g ord N 00 0
dr ordr Or 46
d orad N 00 0
00  90dr 03606
(37)

Equations (38) and (39) show the transformation matrices.
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Apq = ﬁ (1)
0 —=
206
(38)
I A
Pan = Ban = l 0 2J§l
(39)
Now go from cartesian to (7 §) coordinates - n — 7
L cos(®)  sin(6)
Ay = AspAin = 2Vr [ cos(6) sin(6) 1 _ 2T 2WF
an = Aaafan = 0 1 |l-rsin(®) rcos()] T sin(8) 1 cos(9)
28 26 N
cos (\/5) sin (\/5)
_ 27 27
| VFsin (\/5) VT cos (\/5)
" . (40)
cos(0) - oint®) 207 0 [2\/? cos(0) —Ml
B,z = B7Bs5 = _
nn nnPnn . COS(@) [ e-l —
o) 0 2o lzx/? sin(8) m J
_ _ _ 20 sin (\/5)
_ 27 cos (\/5) — T
_ - 2\/5605 (\/5)
|2V sin (‘/5) —F
(41)

Note that equation (41) has been set up so that matrix multiplication is valid. Another way of
seeing this is (4,4,)7! = A71A3! = A7 AL = B,2Bnz from properties of matrix inverses.

The transformation equations in matrix form are given by equations (42) and (43).

11



(42)

cos (\/5) sin (\/5) ]
£ - 2V 2VF
" VT sin (\/5) VT cos (\/5)
o o (43)
4
Equation (44) computes the reciprocal basis vectors.
W = B™W = W; = BL-W;; = BazWi )
44
where
W is the polar coordinate reciprocal basis
Wz = B"W = Bl;Wy = BaaWy = [Byal"l = Ban
_ _T
20 si o = —
27 co5 () __Sji_(f ) [ #feeos (7))
—_— r — -_— . - — —
= ] 2\/5608(\/5) l_Z 05”’1(\/5) 2 9COS(\/5)J
2T sin (\/5) T VT VT
(45)
Computation of I'=
Equation (46) gives the definition of I using equation (2).
oE _ 0Ez 0E;
=T.=— Wl =—2wlI=—_p
n=lr=5W o7 Vi = 7 Bna 5)
where

W' = W7 = [B"W]" = W'B = W By = Bug
Wil =1

12



[ cos (\/5) sin (\/5) ]
0Ez 0|  2vF 2NF
oFf — OF| \Fsin (\/5) VT cos (\/5)
20 N

Computing equation (47) term by term

otg) o (e0s(VO)) _cos(VO) o ) cos(VO)
[af] or\  2vF A, (

2

%] - o (ﬁ)%(f-m) = (n (@) (-37)=

or 2 F 2 2

- sin (V@ sin(V0) 1 »
], =5 == g )

[%] _COS(\/_) ( /)_COS(\/E)(:[):COS(\/E)
07 1y, \/_ or 2\/5 2NT 4\/5\/?
Equations (48) — (51) =
[ cos (\/5) sin (\/5)
0Eq | 4r32 43 .
oF _Sin(\/g) V7 cos (ﬁ)
INENGEENE NG

Equation (46) =

[ cos (V0 ; A\ 1
(\/5) sin (\/5) ) _
Lerofry _ . T g ||2VTcos (Vo) -
TR T gE e T (\/5) VT cos (\/5) ]
i adave 12Tsn(Ve)

13

sin (V)

473/2

_ sin (\/5)
4/ovF

VT
2\/§cos (\/5)

VT

2\/§sin (\/5) ]

(47)

-on) cos(V9)

L

(48)

(49)

(50)

(51)

(52)



Computing equation (53) term by term =

_cos (\/5) 27 cos (\/5) ~ sin (\/5) 2T sin (\/5)

[Ff]ll = 473/2 473/2
~ 2\F [cos2 (\/5) + sin? (\/5)] 1
T 47372 -T2
2\/5605 (\/5) sin (\/5) Zﬁsin (\/5) cos (\/5)
rliz = 477372 JF - 473/2 N =
\/5 [cos (\/5) sin (\/5) — sin (\/5) cos (\/5)] _ 0
272
T, = 2+\/[rsin (\/5) cos (\/5) 2\/Tcos(0) sin (\/5) 0
e o7 Y
sin (\/5) 24/ 0 sin (\/5) VT cos (\/5) 24/ 0 cos (\/5)
Wavr |  adev
T, = sin (\/5) 2+/0 sin (\/5) cos (\/5) 26 cos (\/5)
I wWer )\ ) e )\

= 42\/\/;? [sin2 (\/5) + cos? (\/5)] =

Using equations (54) — (57) =

~ 0

: l 7 \
T 1
0 R

27

Now test equation (12) to see that we get the same result. For n — n equation (12) =

14

(53)

(54)

(55)

(56)

(57)

(58)



aA-ﬁﬁ aql

Iz = g7 Ban + ﬁAﬁﬁrlBﬁﬁ =
Fr = —= Baa + 5= Aaalr Bai + 5= AraleBra =

The first term of equation (59) =
1

— 0
0Ajn _ 0 2VF [ ! 0]

— = o= 1 |=| a2
ar ar 0 _ 0 0
2/
To evaluate the second terms of equation (59) =
or 1
or 247
06 0
or

Using the equations (61) and (62) in equation (59) =

1 _
= 0 2VF 0 l
I [ 45 / 0][ 0 26

nn

or

RIS
|2V7 100 2NF 0
+| 1 5=l f+0 .
l 0 ____J 2vr|0 0 2V6
2/0
1 0|0 o
— [_% O] + 2T 1 [0 L] IZ\/% 0 —
0 0 0 — 2Frdl 0 2V0
24/6

15

ar a0
Bri + Aza [ﬁ I+ Fr Fe] Bra

(12)

(59)

(60)

(61)

(62)



— 0
_i 0 2T —-—— 0
=| 2r + . 1 = \/_
0 0 — 2NTT
2\/5 '
(63)
1 0 0 -— 0
-— 0 1 |=| 27
[ 27 + 0 ] - 1
0 0 2VPVF 0 —
L 2r
Equation (63) is the same as equation (58) as expected.
Computation of Iy
Equation (64) gives the definition of I3 using equation (2).
oE _ 0E; 0E;
. T-_wlI-_""p _
=l =5"" =33 25 W a7 Oni
(64)
cos (\/5) sin (\/5) ]
0Ez _ 0|  2vF 2VF
26 a6 V7 sin (\/5) VT cos (\/5)
28 218
(65)

Computing equation (65) term by term =

= cos \/5 _ . _ 1 sin \/5
(5, - {2 st 67 - ) -

[%] :i<sin (ﬁ)> _ 1 i(sm(ﬁ)) :#<C05(\/5))%9__1/2 _ cos (\/5)

00 1, 06 27 2/ 06

_ Nr

20 1,, ~ 6

o (_\/_sm (f)) Vs <sm(¢5)>



0

_ﬁ<—\/5 cos (V0) (1/2) (1/8) — sin (V8) (1/2) (1/x/5)>

203/2

NG (ﬁ cos (v/6) - sin (ﬁ)) _ V7sin (V8) ~ Vd cos (13)

46 3/2

(68)

301, 206 2

NG
_ —ﬁxf?sin (\/5) — 7 cos (\/5)

403/2

Using equations (66) — (69) =

sin (\/5)
OBz _ - wio

26 VT sin (\/5) — \ﬁ\/ﬁ cos (\/5) —\/F‘\/Esin (‘/5) —VF cos (\/5)

0

cos ()
NG

IEE

19372

_ sin (\/5) cos (\/5)
=g Wi/o wWi/o .
96 V7 sin (\/5) — \/?‘\/5 cos (\/5) —\/?\/Esin (\/5) — 7 cos (\/5)
L 463/2 463/2 :
-2\/? cos (ﬁ) — M
_2\/? sin (ﬁ) 2\/560\/;(\/5) _

Computing equation (71) term by term =

17

4 () (T D) (D)

(69)

(70)

(71)



Tylas = ( i (ﬁ)> 247 cos (VB) + (“’S (ﬁ)> (247 sin (45))

- 4ie N
—\/T sin (\/5) cos (\/5) + /7 cos (\/5) sin (\/5)

B 2V -
(72)
. _ sin (\/5) 2\/551'11 (\/5) cos (\/5) 2\/5005 (\/5)
[9]12——4\/?\/5 - N + NN N
sl (@) reo ()] _a5 1
- 47/a Canfa 2T
(73)
VT sin \/5 —\/?\/Ecos 6 _
[Tgl21 = < ( )453/2 (\/—)> (2\/? cos (\/5))
Vi Bsin (V) = VF cos (V& _
)
~ 27 sin (\/5) cos (\/5) - 217\/50052(0_) - 2\/517 sin? (\/5) — 27 cos (\/5) sin (\/5)
B 463/2
~ —27 [\/50052(9_) — sin (\/5) cos (\/5) + cos (\/5) sin (\/5) + \/5 sin? (\/5)]
B 463/2
~ —27 [\/Ecosz(é) + \/5 sin? (\/5)] O
B 493/2 Y
(74)
VT sin (\/5) - \/?‘\/5 cos (\/5) 2\/551'71 (\/5)
[Tgl22 = 403/2 - JF
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7/ Bsin (\/5) — /7 cos (\/5) 2./8cos (\/5)

+

46372 V7
2\F [—\/5 sin? (\/5) + Osin (\/5) cos (\/5) — 0 sin (\/5) cos (\/5) — \/Ecosz (\/5)]
- \/%43_3/2
2\/1;\/5 [ sin? (\/5) + cos? (\/5)] 1
T NZVEE T 20
(75)
Putting equations (72) — (75) into a matrix =
0 1
oo 27
& T 1
20 20
(76)
Now make the computation from equation (12)
0As5 aq
T = 5,5 Ban + 55 AwaliBaz =
0Ann or 00 0Azn or 00
g = WBﬁﬁ + ﬁAﬁﬁFrBﬁﬁ + ﬁAﬁﬁFeBﬁﬁ = WBﬁﬁ + Aan [ﬁ L+ ﬁre] Bas
(77)
Compute the first term in equation (77) =
L o]
0Amn _ 9 |2VF |_[° % ]
00 60[ 0 1 _J 0 RY-E
26
(78)
aAﬁﬁB__O % IZ\/F‘ 0]_0 %
06 ™ [0 —zmEz|lo 2val |0 —35
(79)

Compute the second terms in equation (77) =

19



—_=O

a0

a0 1
e
a0 240

(80)
Lo
1 0 01 |2v7 1 [o Y2 o
+ A —=ToBar = | _A [+ 1 |7 r =
NG 28 |0 —|2val oll o 2V8
2.6
1 1 1
— O 0 = _
27 2:/or lzﬁ 0 l
0 L __r 0 0 2\/5
2Jall 24d
L TR ) 1
27 I 2Fr
1 Vi 1T lo —=|T =
T 0 _ 7
0 —F&=|-——= © 200 [ 12
2v/ell o 26
1 0 1
NTVE(_| T oF
VIVTF 1
~ 7 0 20 20
(81)

Equation (81) is the same as equation (76) as expected.
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